CF431 C. k-Tree
题目传送门:https://codeforces.com/problemset/problem/431/C
题目大意:
给定\(n,k,d\),构造一个长度任意(假定为\(m\))的序列\(A\),满足\(A_i\in[1,k]\)且\(\sum\limits_{i=1}^mA_i=n\),且 \(\exists i\in[1,m],A_i\geqslant d\),问有多少种不同的构造方法?
长度不同,或者\(A_i\neq A_i^`\),即认为是不同的序列
长度任意的话,其实就是一个经典的01背包问题,多开一维记录是否满足\(\exist i\in[1,m],A_i\geqslant d\)即可
/*program from Wolfycz*/
#include<map>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define Fi first
#define Se second
#define ll_inf 1e18
#define MK make_pair
#define sqr(x) ((x)*(x))
#define pii pair<int,int>
#define int_inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>inline T frd(T x){
int f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
template<typename T>inline T read(T x){
int f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e2,P=1e9+7;
int F[2][N+10];
int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n=read(0),k=read(0),d=read(0); F[0][0]=1;
for (int i=1;i<=n;i++){
for (int j=1;j<=min(i,k);j++){
F[ 1 ][i]=(F[ 1 ][i]+F[1][i-j])%P;
F[j>=d][i]=(F[j>=d][i]+F[0][i-j])%P;
}
}
printf("%d\n",F[1][n]);
return 0;
}