CF850 E. Random Elections

题目传送门:CF

题目大意:

现有\(A,B,C\)三人参加竞选,有n个市民对其进行投票,每个市民心中对三人都有一个优先顺序(如市民\(i\)对三人的优先顺序为\(A-C-B\),则凡是有\(A\)的竞选他都会选\(A\),没\(A\)的时候才会选\(C\))

现共有三次选举,\(A-B,A-C,C-A\),每次选举市民都会选择前一个人或后一个人,我们定\(X_i=1\)表示市民\(i\)在某次竞选中支持前一个人,否则支持后一个人

我们将每次选举的\(X_i\)压缩成一个长度为\(n\)的二进制串\(S\),定义\(f(S)\)表示该次选举的结果(前者或后者胜利,和\(X_i\)含义类似)

然后我们给出共\(2^n\)\(f(S)\)的答案,并且三次选举的\(f(S)\)都相同,定义\(p\)为某个候选人赢了两场的概率(在所有市民,每人6种优先顺序的情况下,某个候选人胜了两场的概率),输出\(p\times 6^n\)的值


哇……这题题意杀……

我们发现三个人本质相同,因此我们只考虑一个人,最后将答案乘3即可

假设\(A\)赢了两场,我们设两次比较时的结果\(P_1(A-B),P_2(C-A)\),考虑第\(i\)个市民,\(P_1,P_2\)在第\(i\)位的结果为\((x,y)\)

\((x,y)=(0,0)\Longrightarrow CBA,BCA\)

\((x,y)=(0,1)\Longrightarrow BAC\)

\((x,y)=(1,0)\Longrightarrow CAB\)

\((x,y)=(1,1)\Longrightarrow ABC,ACB\)

所以,记\(c\)表示\(P_1\oplus P_2\)中1的个数,那么优先顺序的方案为\(2^{n-c}\)

所以我们直接对给定的数组FWT一下,然后把每个位置的数值乘上\(2^{n-c}\)即可

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
	static char buf[1000000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
	int x=0,f=1; char ch=gc();
	for (;ch<'0'||ch>'9';ch=gc())   if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
	return x*f;
}
inline int read(){
	int x=0,f=1; char ch=getchar();
	for (;ch<'0'||ch>'9';ch=getchar())  if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<3)+(x<<1)+ch-'0';
	return x*f;
}
inline void print(int x){
	if (x<0)	putchar('-'),x=-x;
	if (x>9)	print(x/10);
	putchar(x%10+'0');
}
const int p=1e9+7,inv=5e8+4;
void div(int &x){x=1ll*x*inv%p;}
void FWT(int *a,int n,int type){
	for (int i=2;i<=n;i<<=1){
		for (int j=0;j<n;j+=i){
			for (int k=0;k<i>>1;k++){
				int x=a[j+k],y=a[j+k+(i>>1)];
				a[j+k]=(x+y)%p,a[j+k+(i>>1)]=(x-y+p)%p;
				if (!~type)	div(a[j+k]),div(a[j+k+(i>>1)]);
			}
		}
	}
}
int f[(1<<20)+10],g[50],cnt[(1<<20)+10];
char s[(1<<20)+10];
int main(){
	int n=read(),Ans=0; g[0]=1;
	for (int i=1;i<=n;i++)	g[i]=2ll*g[i-1]%p;
	scanf("%s",s);
	for (int i=0;i<1<<n;i++){
		f[i]=s[i]-'0';
		cnt[i]=cnt[i>>1]+(i&1);
	}
	FWT(f,1<<n,1);
	for (int i=0;i<1<<n;i++)	f[i]=1ll*f[i]*f[i]%p;
	FWT(f,1<<n,-1);
	for (int i=0;i<1<<n;i++)	Ans=(1ll*f[i]*g[n-cnt[i]]+Ans)%p;
	Ans=3ll*Ans%p;
	printf("%d\n",Ans);
	return 0;
}
posted @ 2019-02-26 15:23  Wolfycz  阅读(218)  评论(0编辑  收藏  举报