AtCoder Grand Contest 003 D - Anticube
题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_d
题目大意:
给定\(n\)个数\(s_i\),要求从中选出尽可能多的数,满足任意两个数之积都不是完全立方数
对于每个数\(s_i\),有\(s_i=\prod\limits_{i=1}^mp_i^{k_i}\),则我们令\(a_i=\prod\limits_{i=1}^mp_i^{k_i\%3}\),然后我们用\(a_i\)代替\(s_i\)来进行考虑,
对于每个\(a_i\),满足\(a_i×a_j\)为立方数的\(a_j\)只有一种取值,我们可以贪心地选择出现次数较多的那一种
预处理出\(\sqrt[3]{S}\)内的质数,对于每个\(s_i\)可以在\(O(M+\log s_i)\)的时间内求出\(a_i\)
然后对于考虑每个质因子的次数,可以求出\(a_j\)
(其实这题时限够大,可以预处理质数)
/*program from Wolfycz*/
#include<map>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define Fi first
#define Se second
#define inf 0x7f7f7f7f
#define sqr(x) ((x)*(x))
#define cub(x) ((x)*(x)*(x))
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e5;
ll A[N+10],B[N+10];
map<ll,int>Mp;
int main(){
int n=read();
for (int i=1;i<=n;i++){
ll x,y=1;
scanf("%lld",&x);
for (ll j=2;cub(j)<=x;j++) while (x%cub(j)==0) x/=cub(j);
map<ll,int>::iterator it=Mp.find(x);
if (it==Mp.end()) Mp.insert(map<ll,int>::value_type(x,1));
else it->Se++;
A[i]=x;
for (ll j=2;cub(j)<=x;j++){
if (x%j==0){
y*=(x%sqr(j)==0)?j:sqr(j);
while (x%j==0) x/=j;
}
}
y*=(sqr((ll)sqrt(x))==x)?(ll)sqrt(x):sqr(x);
B[i]=y;
}
int Ans=0;
map<ll,int>::iterator it=Mp.find(1);
if (it!=Mp.end()) Ans++,it->Se=0;
for (int i=1;i<=n;i++){
int res=0;
map<ll,int>::iterator x=Mp.find(A[i]);
map<ll,int>::iterator y=Mp.find(B[i]);
if (x!=Mp.end()) res=max(res,x->Se),x->Se=0;
if (y!=Mp.end()) res=max(res,y->Se),y->Se=0;
Ans+=res;
}
printf("%d\n",Ans);
return 0;
}