Wolfycz的娱乐赛题解

现在不会放题解的!比赛完了我会把题解放上来的

祝大家玩的愉快~

等会,cnblogs不会显示更新时间?我禁赛我自己


UPD:2018.12.15

欢迎大家爆踩标程~

painting

我们考虑转化题意,题目要求

\[\sum\limits_{i_1=1}^n\sum\limits_{i_2=i_1+opt}^n...\sum\limits_{i_m=i_{m-1}+opt}^n1 \]

然后我们分情况讨论一下

  • 若opt=1,那么答案即为\(\binom{n}{m}\)
  • 若opt=0,那么序列\(i_1,i_2,...,i_m\)必然是个不减序列,我们令\(A_k=i_k+k\),那么序列\(A\)必然是个严格递增序列,并且取值在\((1,n+m]\),所以答案即为\(\binom{n+m-1}{m}\)(插板法同样可以解决)

然后注意求\(\binom{n}{m}\)需要for循环,复杂度\(O(Tm)\)

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
	static char buf[1000000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
	int x=0,f=1;char ch=gc();
	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
inline int read(){
	int x=0,f=1;char ch=getchar();
	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
inline void print(int x){
	if (x<0)	putchar('-'),x=-x;
	if (x>9)	print(x/10);
	putchar(x%10+'0');
}
const int N=1e6,p=1e9+7;
int inv[N+10];
int C(ll n,int m){
	if (n<m)	return 0;
	int res=1;
	for (int i=1;i<=m;i++)	res=1ll*res*((n-i+1)%p)%p*inv[i]%p;
	return res;
}
int main(){
	inv[1]=1;
	for (int i=2;i<=N;i++)	inv[i]=1ll*(p-p/i)*inv[p%i]%p;
	for (int Data=read();Data;Data--){
		ll n; int m,opt;
		scanf("%lld%d%d",&n,&m,&opt);
		printf("%d\n",opt?C(n,m):C(n+m-1,m));
	}
	return 0;
}

sequence

我们打表可得,\(A_1=2,A_2=3,A_i=A_{i-1}+A_{i-2}-[i\%2==0]\),然后记录三个信息矩阵快速幂一下,复杂度\(O(T*3^3\log n)\),只有40pts(常数优秀的大佬应该可以有100pts),然鹅吸个氧就可以过了(滑稽

不过考试时不能吸氧,于是我们考虑优化,但这个式子已经不好优化了,那么我们换个思路(其实是我不知道怎样优化这个式子),令\(x=\dfrac{1+\sqrt{5}}{2},y=\dfrac{1-\sqrt{5}}{2}\),不难发现\(x,y\)恰好为\(t^2=t+1\)的两个解。我们构造数列\(F_n=F_{n-1}+F_{n-2}\),则\(x,y\)\(F_n\)的两个特征根。我们令\(F_n=x^n+y^n\),把\(n=1,2\)代入得到\(F_1=1,F_2=3\),然后我们进行分类讨论:

  • \(n\)为奇数,则有\(-1<y^n<0\),此时\(\lceil x^n\rceil(A_n)=F_n+1\)
  • \(n\)为偶数,则有\(0<y^n<1\),此时\(\lceil x^n\rceil(A_n)=F_n\)

所以我们只要求出\(F_n\),即可求出\(A_n\),因为\(F_n=F_{n-1}+F_{n-2}\),所以我们使用矩阵快速幂即可,复杂度\(O(T*2^3\log n)\)

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
	static char buf[1000000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
	int x=0,f=1;char ch=gc();
	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
inline int read(){
	int x=0,f=1;char ch=getchar();
	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
inline void print(int x){
	if (x<0)	putchar('-'),x=-x;
	if (x>9)	print(x/10);
	putchar(x%10+'0');
}
const int p=998244353;
struct Matrix{
	int v[2][2];
	Matrix(){memset(v,0,sizeof(v));}
	void clear(){memset(v,0,sizeof(v));}
	void init(){for (int i=0;i<2;i++)	v[i][i]=1;}
}A,B;
Matrix operator *(const Matrix &x,const Matrix &y){
	Matrix z;
	for (int i=0;i<2;i++)
		for (int j=0;j<2;j++)
			for (int k=0;k<2;k++)
				z.v[i][k]=(z.v[i][k]+1ll*x.v[i][j]*y.v[j][k])%p;
	return z;
}
Matrix mlt(Matrix a,ll b){
	Matrix res; res.init();
	for (;b;b>>=1,a=a*a)	if (b&1)	res=res*a;
	return res;
}
int main(){
	A.v[0][0]=A.v[0][1]=A.v[1][0]=1;
	for (int T=read();T;T--){
		ll n; scanf("%lld",&n);
		B.v[0][0]=3,B.v[0][1]=1;
		if (n<=2){
			printf(n==1?"2\n":"3\n");
			continue;
		}
		B=B*mlt(A,n-2);
		printf("%d\n",B.v[0][0]+(int)(n&1));
	}
	return 0;
}

polynomial

显然有\(\sum\limits_{i=0}^na^ib^{n-i}=\dfrac{a^{n+1}-b^{n+1}}{a-b}\),不过万恶的出题人为了卡掉这个做法,选择了读入膜数\(p\),这样就导致\(a-b\)可能不存在\(\%p\)意义下的逆元……(a掉出题人)

这题我们考虑分治,对\(n\)的奇偶性进行讨论:

  • \(n\)为奇数,则有\(\sum\limits_{i=0}^na^ib^{n-i}=(\sum\limits_{i=0}^{\lfloor n/2\rfloor}a^ib^{\lfloor n/2\rfloor-i})\times(a^{\lfloor n/2\rfloor+1}+b^{\lfloor n/2\rfloor+1})\)
  • \(n\)为偶数,则有\(\sum\limits_{i=0}^na^ib^{n-i}=(\sum\limits_{i=0}^{n/2}a^ib^{n/2-i})\times(a^{n/2}+b^{n/2})-a^{n/2}b^{n/2}\)

注意在计算\(a^{n/2},b^{n/2}\)的时候不能使用快速幂,应该在递归的时候不断平方,否则时间复杂度是\(O(T\log^2 n)\),这样显然是过不了的

然后注意由于\(p\)过大,乘起来会爆long long,于是我们可以用__int128……(如果没记错我应该是卡了int128,但是吸口氧应该能过)

化乘为加也不行,会给复杂度添个\(\log\)(无良出题人啊),因此我们使用下面这个乘法

typedef long long ll;
typedef long double ld;
ll mlt(ll _a,ll _b,ll _p){
	ll _c=ld(_a)*_b/_p;
	ll _ans=_a*_b-_c*_p;
	if (_ans<0)	_ans+=_p;
	return _ans;
}

乘的过程中,如果溢出了就不管了,反正两个部分溢出的是一样的,相减即可把溢出部分消掉。(你要相信出题人用的也是这个,不然他造不了数据)

ps:对于所有的数据点,化乘为加与该乘法输出答案相同

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
#define sqr(x) mlt(x,x)
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
	int x=0,f=1;char ch=getchar();
	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
inline void print(int x){
	if (x>=10)	 print(x/10);
	putchar(x%10+'0');
}
ll a,b,n,p,Afac,Bfac;
ll mlt(ll _a,ll _b){
	ll _c=ld(_a)*_b/p;
	ll _ans=_a*_b-_c*p;
	if (_ans<0)	_ans+=p;
	return _ans;
}
ll work(ll n){
	if (n<=1)	return !n?1:(a+b)%p;
	ll sum=work(n>>1);
	Afac=sqr(Afac),Bfac=sqr(Bfac);
	if (n>>1&1)	Afac=mlt(Afac,a),Bfac=mlt(Bfac,b);
	return n&1?mlt(mlt(Afac,a)+mlt(Bfac,b),sum):(mlt(Afac+Bfac,sum)-mlt(Afac,Bfac)+p)%p;
}
int main(){
	for (int Data=read();Data;Data--){
		scanf("%lld%lld%lld%lld",&n,&a,&b,&p),Afac=Bfac=1;
		printf("%lld\n",(work(n)+p)%p);
	}
	return 0;
}

fibonacci

这题首先想到树剖,但是直接树剖完全无法维护,因此我们需要知道Fibonacci数列的一个性质:\(Fib_{n+m}=Fib_{m-1}*Fib_{n}+Fib_{m}*Fib_{n+1}\)(证明请自行百度)

那么对于每个点加的值\(Fib_{D+k}\),我们可以将其改为\(Fib_d+k'\)(\(d\)为该点在树上的深度,且\(D+k=d+k'\)),那么每个点加的值为\(Fib_{d-1}*Fib_{k'}+Fib_d*Fid_{k'+1}\)(或者其他方式),因为\(k'=D-d+k\),且\(D-d\)是个定值,所以\(k'\)是个定值,因此我们只要对于每个节点维护好\(Fib_{d-1},Fib_{d}\),就可以用树剖+线段树维护其系数,细节可以看下代码

就算\(k'\)是负数也没关系,你可以用负数去尝试,依然满足该性质,\(Fib_{k'}\)使用\(Fib_{k'+2}=Fib_{k'}+Fib_{k'+1}\)倒序求即可(或者可以用\(Fib_{-n}=(-1)^{n-1}Fib_{n}\)求得,我使用后者)

由于\(k'\)达到了\(10^{18}\),所以我们需要用矩乘求\(Fib_{k'}\)(矩乘是不是有点多啊……)

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
	static char buf[1000000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
	int x=0,f=1; char ch=gc();
	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<3)+(x<<1)+ch-'0';
	return x*f;
}
inline int read(){
	int x=0,f=1; char ch=getchar();
	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<3)+(x<<1)+ch-'0';
	return x*f;
}
inline void print(int x){
	if (x<0)	putchar('-'),x=-x;
	if (x>9)	print(x/10);
	putchar(x%10+'0');
}
const int N=1e5,Mod=1e9+7;
int n,m;
struct Node{
	int x,y;
	Node(){x=y=0;}
	Node(int _x,int _y){x=_x,y=_y;}
	Node operator +(const Node &tis)const{return Node((x+tis.x)%Mod,(y+tis.y)%Mod);}
	int operator *(const Node &tis)const{return (1ll*x*tis.x+1ll*y*tis.y)%Mod;}
};
struct Matrix{
	int v[2][2];
	Matrix(){memset(v,0,sizeof(v));}
	void init(){for (int i=0;i<2;i++)	v[i][i]=1;}
}trans;
Matrix operator *(const Matrix &x,const Matrix &y){
	Matrix z;
	for (int i=0;i<2;i++)
		for (int j=0;j<2;j++)
			for (int k=0;k<2;k++)
				z.v[i][k]=(z.v[i][k]+1ll*x.v[i][j]*y.v[j][k])%Mod;
	return z;
}
Matrix mlt(Matrix a,ll b){
	Matrix res; res.init();
	for (;b;b>>=1,a=a*a)	if (b&1)	res=res*a;
	return res;
}
Node Fib(ll x){
	Matrix res; res.v[0][1]=1;
	res=res*mlt(trans,x<0?-x-1:x);
	if (x>=0)	return Node(res.v[0][0],res.v[0][1]);
	res.v[0][(-x-1)&1]=-res.v[0][(-x-1)&1];
	return Node(res.v[0][1],res.v[0][0]);
}
void init(){trans.v[0][1]=trans.v[1][0]=trans.v[1][1]=1;}
int v[N+10],dfn[N+10],ID[N+10];
struct S1{
	#define ls (p<<1)
	#define rs (p<<1|1)
	struct node{
		int sum;
		Node val,tag;
	}tree[(N<<2)+10];
	void updata(int p){
		tree[p].val=tree[ls].val+tree[rs].val;
		tree[p].sum=(tree[ls].sum+tree[rs].sum)%Mod;
	}
	void Add_tag(int p,Node v){
		tree[p].sum=(tree[p].sum+tree[p].val*v)%Mod;
		tree[p].tag=tree[p].tag+v;
	}
	void pushdown(int p){
		if (!tree[p].tag.x&&!tree[p].tag.y)	return;
		Add_tag(ls,tree[p].tag);
		Add_tag(rs,tree[p].tag);
		tree[p].tag=Node(0,0);
	}
	void build(int p,int l,int r){
		if (l==r){
			tree[p].val=Fib(v[dfn[l]]);
			return;
		}
		int mid=(l+r)>>1;
		build(ls,l,mid),build(rs,mid+1,r);
		updata(p);
	}
	void Modify(int p,int l,int r,int x,int y,Node v){
		if (x<=l&&r<=y){
			Add_tag(p,v);
			return;
		}
		pushdown(p);
		int mid=(l+r)>>1;
		if (x<=mid)	Modify(ls,l,mid,x,y,v);
		if (y>mid)	Modify(rs,mid+1,r,x,y,v);
		updata(p);
	}
	int Query(int p,int l,int r,int x,int y){
		if (x<=l&&r<=y)	return tree[p].sum;
		int mid=(l+r)>>1,res=0;
		pushdown(p);
		if (x<=mid)	res=(res+Query(ls,l,mid,x,y))%Mod;
		if (y>mid)	res=(res+Query(rs,mid+1,r,x,y))%Mod;
		return res;
	}
	#undef ls
	#undef rs
}ST;//Segment Tree
struct S2{
	int pre[(N<<1)+10],now[N+10],child[(N<<1)+10],tot,Time;
	int deep[N+10],fa[N+10],size[N+10],top[N+10],Rem[N+10];
	void join(int x,int y){pre[++tot]=now[x],now[x]=tot,child[tot]=y;}
	void insert(int x,int y){join(x,y),join(y,x);}
	void dfs(int x){
		deep[x]=deep[fa[x]]+1,size[x]=1,v[x]=deep[x];
		for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
			if (son==fa[x])	continue;
			fa[son]=x,dfs(son);
			size[x]+=size[son];
			if (size[Rem[x]]<size[son])	Rem[x]=son;
		}
	}
	void build(int x){
		if (!x)	return;
		dfn[ID[x]=++Time]=x;
		top[x]=Rem[fa[x]]==x?top[fa[x]]:x;
		build(Rem[x]);
		for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
			if (son==Rem[x]||son==fa[x])	continue;
			build(son);
		}
	}
	int work(int x,int y){
		int res=0;
		while (top[x]!=top[y]){
			if (deep[top[x]]<deep[top[y]])	swap(x,y);
			res=(res+ST.Query(1,1,n,ID[top[x]],ID[x]))%Mod;;
			x=fa[top[x]];
		}
		if (deep[x]>deep[y])	swap(x,y);
		res=(res+ST.Query(1,1,n,ID[x],ID[y]))%Mod;;
		return res;
	}
}HLD;//Heavy Light Decomposition
int main(){
	init(); char s[5];
	n=read(),m=read();
	for (int i=1;i<n;i++){
		int x=read(),y=read();
		HLD.insert(x,y);
	}
	HLD.dfs(1),HLD.build(1),ST.build(1,1,n);
	for (int i=1;i<=m;i++){
		scanf("%s",s);
		if (s[0]=='U'){
			int x=read(); ll k;
			scanf("%lld",&k);
			k-=v[x]+1;
			ST.Modify(1,1,n,ID[x],ID[x]+HLD.size[x]-1,Fib(k));
		}
		if (s[0]=='Q'){
			int x=read(),y=read();
			printf("%d\n",HLD.work(x,y));
		}
	}
	return 0;
}
posted @ 2018-12-07 20:52  Wolfycz  阅读(1370)  评论(2编辑  收藏  举报