AtCoder Regular Contest 083 E - Bichrome Tree
题目传送门:https://arc083.contest.atcoder.jp/tasks/arc083_c
题目大意:
给定一棵树,你可以给这些点任意黑白染色,并且赋上权值,现给定一个序列\(X_i\),满足对于每一个点\(i\),整棵子树内所有和\(i\)颜色相同的点的权值和为\(X_i\),问是否可能
首先因为权值大小任意,所以\(v\)的子树内权值和只要不超过\(X_v\)就好,那么对于一个点\(v\)假定其为黑色,那么子树中黑色总和为\(X_v\),白色总和就要尽量小,定义为\(f_v\)
那么选定\(v\)为黑色后,假定子树内黑色总和为\(B\),白色总和为\(W\),那么对于每个子节点\(v\)有两种选择
\(B+=X_u,W+=f_u\)或\(B+=f_u,W+=X_u\)
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
#define min(x,y) (x<y?x:y)
#define max(x,y) (x>y?x:y)
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e3,M=5e3;
int pre[N+10],now[N+10],child[N+10],tot;
int f[N+10],g[2][M+10],v[N+10];
void join(int x,int y){pre[++tot]=now[x],now[x]=tot,child[tot]=y;}
void dfs(int x){
for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]) dfs(son);
memset(g[0],63,sizeof(g[0]));
int T=0; g[T][0]=0;
for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
T^=1;
memset(g[T],63,sizeof(g[T]));
for (int i=0;i<=v[x];i++){
if (i>=v[son]) g[T][i]=min(g[T][i],g[T^1][i-v[son]]+f[son]);
if (i>=f[son]) g[T][i]=min(g[T][i],g[T^1][i-f[son]]+v[son]);
}
}
for (int i=0;i<=v[x];i++) f[x]=min(f[x],g[T][i]);
}
int main(){
int n=read();
for (int i=2;i<=n;i++) join(read(),i);
for (int i=1;i<=n;i++) v[i]=read();
memset(f,63,sizeof(f));
dfs(1);
printf(f[1]<inf?"POSSIBLE\n":"IMPOSSIBLE\n");
return 0;
}