Problem
给定n个字符串Si,任意选出k个字符串Ai,使得其中任意两个字符串lcp之和最大。
Solution
建一棵trie树,枚举每一个节点对答案的贡献,树形dp,时间复杂度像是O(N^3)
由于每个点对只在自己LCA的时候枚举到贡献,所以是O(N^2)
Notice
这道题分析时间复杂度十分重要
Code
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 2000, M = N * 500;
const double eps = 1e-6, phi = acos(-1);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int S = 0, num = 0, cnt[M + 5], deep[M + 5], head[M + 5], F[N * 2 + 5][N + 5], Size[M + 5], son[M][26];
char st[N + 5];
struct node
{
int vet, next, val;
}edge[2 * M];
void add(int u, int v, int w)
{
edge[++num].vet = v;
edge[num].next = head[u];
edge[num].val = w;
head[u] = num;
}
void dfs(int u, int fa, int last)
{
deep[u] = deep[fa] + 1;
int tot = cnt[u];
rep(i, 0, 25)
if (son[u][i]) tot++;
if (tot != 1 || cnt[u]) add(last, u, deep[u] - deep[last]);
rep(i, 0, 25)
if (son[u][i])
if (tot == 1 && !cnt[u]) dfs(son[u][i], u, last);
else dfs(son[u][i], u, u);
}
int dp(int u, int fa, int len)
{
int now = ++S;
Size[u] = cnt[u];
per(i, cnt[u], 1) F[now][i] = i * (i - 1) / 2 * len;
travel(i, u)
{
int v = edge[i].vet;
if (v == u) continue;
int pre = dp(v, u, edge[i].val);
Size[u] += Size[v];
per(j, Size[u], 1)
rep(k, 1, min(j, Size[v]))
F[now][j] = max(F[now][j], F[now][j - k] + F[pre][k] + len * (j - k) * k + len * k * (k - 1) / 2);
}
return now;
}
int sqz()
{
memset(head, 0, sizeof head);
int n = read(), m = read(), point = 0;
rep(i, 1, n)
{
scanf("%s", st + 1);
int len = strlen(st + 1), now = 0;
rep(j, 1, len)
{
if (!son[now][st[j] - 'a']) son[now][st[j] - 'a'] = ++point;
now = son[now][st[j] - 'a'];
}
cnt[now]++;
}
dfs(0, -1, 0);
dp(0, -1, 0);
printf("%d\n", F[1][m]);
return 0;
}