Problem
有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。
求使每个人糖果数相同的最小代价。
Solution
我们假设第i为同学给了第i+1为同学Xi个糖果(n的后一位为1)
所以ans = X1 + X2 + X3 + ······ + Xn
我们可以列出方程:A1+Xn-X1=average,A2+X1-X2=average,······,An+Xn-1-Xn=average
所以X1=A1+Xn-average,X2=A2+X1-average=X1-C1,······,Xn=An+Xn-1-average=X1-Cn-1
所以我们可以计算出C数组,然后问题转化为求|X1|+|X1-C1|+|X1-C2|+······+|X1-Cn-1|
由初中数学的,此时最小值为X1位于在最中间的两个点中间任意一点上都可以取到最小值
所以只需要求出中位数
详情参见:http://hzwer.com/2656.html
Notice
想到思路就很简单了
Code
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 1000000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
ll ans;
ll X[N + 5];
int sqz()
{
int n = read();
rep(i, 1, n)
{
int T = read();
X[i] = X[i - 1] + T;
}
rep(i, 2, n) X[i] -= X[n] / n * (i - 1);
sort(X + 1, X + n + 1);
rep(i, 1, n) ans += abs(X[i] - X[(n + 1) / 2]);
printf("%lld\n", ans);
}