Problem

一个n*m块砖的建筑,一共k天,每天风从两边吹,吹掉砖的概率为p,反之为1-p,求最终建筑没有倒塌的可能性(上层与下层有交集且每一层都有砖)

Solution

首先,我们可以预处理出pl[]和pr[]数组,表示k天后左右两边风吹到的位置的可能性
然后我们可以枚举层数,当前这一层的左右端点和上一层的左右端点,如果有公共部分则转移
这样的时间复杂度是O(n^5),显然我们可以用前缀和来优化:
引入f[i][r]+=dp[i][l][r](l <= r),再用一个sumr数组维护f数组的前缀和(suml数组是和sumr对称的)
那么dp[i][l][r]就等于总概率减去上一层区间在这个区间左边的概率和上一层区间在这个区间右边的概率(不相交的概率)
这样时间复杂度就降为了O(n2),我们再考虑优化使得时间复杂度降为O(n2):
我们再把dp降为两维,表示第i层最右边是j的概率
dp[i][j]=pl[l]pr[r](sumr[i-1][m] - suml[i-1][r+1] - sumr[i-1][l-1])
我们发现当l改变时,dp[i][j]改变的是可以再用前缀和维护的
于是时间复杂度变成了O(n^2)

Notice

前缀和预处理较多

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, mo = INF + 7, N = 1505, K = 100005;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
ll p1[K], p2[K];
ll dp[N][N], suml[N][N], sumr[N][N], sum1[N], sum2[N], tt[K], pl[N], pr[N];
ll quickmo(ll x, int y)
{
	ll ans = 1;
	while (y)
	{
		if (y & 1) ans = ans * x % mo;
		x = x * x % mo;
		y /= 2;
	}
	return ans;
}
ll C(int n, int m)
{
	return tt[m] * quickmo(tt[m - n], mo - 2) % mo * quickmo(tt[n], mo - 2) % mo;
}
int sqz()
{
	int n = read(), m = read();
	ll a = read(), b = read();
	int k = read();
	p1[0] = 1, p1[1] = a * quickmo(b, mo - 2) % mo;
	p2[0] = 1, p2[1] = (b - a) * quickmo(b, mo - 2) % mo;
	rep(i, 2, k) p1[i] = p1[i - 1] * p1[1] % mo, p2[i] = p2[i - 1] * p2[1] % mo;
	tt[0] = 1;
	rep(i, 1, k) tt[i] = tt[i - 1] * i % mo;
	rep(i, 0, m - 1)
	{
		if (i > k) pl[i + 1] = 0;
		else pl[i + 1] = C(i, k) * p1[i] % mo * p2[k - i] % mo;
		pr[m - i] = pl[i + 1];
	}
	rep(i, 1, m) sum1[i] = (sum1[i - 1] + pl[i]) % mo;
	sumr[0][m] = 1;
	rep(i, 1, n)
	{
		rep(j, 1, m) sum2[j] = (sum2[j - 1] + pl[j] * sumr[i - 1][j - 1]) % mo;
		rep(j, 1, m) dp[i][j] = (pr[j] * (sumr[i - 1][m] - suml[i - 1][j + 1]) % mo * sum1[j] % mo - pr[j] * sum2[j] % mo + mo) % mo;
		rep(j, 1, m) suml[i][m - j + 1] = sumr[i][j] = (sumr[i][j - 1] + dp[i][j]) % mo;
	}
	printf("%lld\n", (sumr[n][m] + mo) % mo);
}
posted on 2017-10-18 10:51  WizardCowboy  阅读(179)  评论(0编辑  收藏  举报