Problem

有一个数列,从1排列到n,然后有Q个操作

  1. Top x:将第x个数放到序列的最前面
  2. Query x:询问x这个数在第几位
  3. Rank x:询问第x位数是什么

Solution

n非常的大,需要离散化:读入的Query操作和Top操作需要离散化
然后每当处理一个数时,用二分计算出离散化后的结果
对于Top操作,先把那个数删掉,然后加在splay的最左边。

Notice

离散化非常复杂

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 500000;
const double eps = 1e-6, phi = acos(-1);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int s[N + 5], e[N + 5], point = 0, root, now, id[N + 5];
struct node
{
	int val[N + 5], Size[N + 5], num[N + 5], son[2][N + 5], parent[N + 5];
	inline void up(int u)
	{
		Size[u] = Size[son[0][u]] + Size[son[1][u]] + num[u];
	}
	void Newnode(int &u, int from, int v)
	{
		u = ++point;
		parent[u] = from, son[0][u] = son[1][u] = 0;
		num[u] = Size[u] = e[v] - s[v] + 1;
		val[u] = v, id[v] = u;
	}
	void Build(int &u, int l, int r, int from)
	{
		int mid = (l + r) >> 1;
		Newnode(u, from, mid);
		if (l < mid) Build(son[0][u], l, mid - 1, u);
		if (mid < r) Build(son[1][u], mid + 1, r, u);
		up(u);
	}
	int Find(int x)
	{
		int l = 1, r = now;
		while (l <= r)
		{
			int mid = (l + r) >> 1;
			if (x >= s[mid] && x <= e[mid]) return mid;
			else if (x < s[mid]) r = mid - 1;
			else l = mid + 1;
		}
	}
	
	void Rotate(int x, int &rt)
	{
		int y = parent[x], z = parent[y];
		int l = (son[1][y] == x), r = 1 - l;
		if (y == rt) rt = x;
		else if (son[0][z] == y) son[0][z] = x;
		else son[1][z] = x;
		parent[x] = z;
		parent[son[r][x]] = y, son[l][y] = son[r][x];
		parent[y] = x, son[r][x] = y;
		up(y);
		up(x);
	}
	void Splay(int x, int &rt)
	{
		while (x != rt)
		{
			int y = parent[x], z = parent[y];
			if (y != rt)
			{
				if ((son[0][z] == y) ^ (son[0][y] == x))
					Rotate(x, rt);
				else Rotate(y, rt);
			}
			Rotate(x, rt);
		}
	}

	void Insert(int &u, int x, int last)
	{
		if (u == 0) 
		{
			Newnode(u, last, x);
			return;
		}	
		else Insert(son[0][u], x, u);
		up(u);
	}
	void Delete(int x)
	{
		Splay(x, root);
		if (son[0][x] * son[1][x] == 0) root = son[0][x] + son[1][x];
		else
		{
			int t = son[1][x];
			while (son[0][t] != 0) t = son[0][t];
			Splay(t, root);
			son[0][t] = son[0][x], parent[son[0][x]] = t;
			up(t);
		}
		parent[root] = 0;
	}

	int Find_rank(int x)
	{
		int t = id[Find(x)];
		Splay(t, root);
		return Size[son[0][root]] + 1;
	}
	int Find_num(int u, int k)
	{
		if (k <= Size[son[0][u]]) return Find_num(son[0][u], k);
		else if (k <= Size[son[0][u]] + num[u]) return s[val[u]] + k - Size[son[0][u]] - 1;
		else return Find_num(son[1][u], k - Size[son[0][u]] - num[u]);
	}
	void Top(int x)
	{
		int t = Find(x);
		int y = id[t];
		Delete(y);
		Insert(root, t, 0);
		Splay(point, root);
	}
}Splay_tree;
int Q[N + 5], T[N + 5];
char st[N + 5][10];
int sqz()
{
	int H_H = read();
	rep(cas, 1, H_H)
	{
		int n = read(), q = read(), num = 0;
		Q[0] = 0;
		rep(i, 1, q)
		{
			scanf("%s%d", st[i], &T[i]);
			if (st[i][0] == 'T' || st[i][0] == 'Q') Q[++num] = T[i];
		}
		Q[++num] = n;
		sort(Q + 1, Q + num + 1);
		now = 0;
		rep(i, 1, num)
		{
			if (Q[i] == Q[i - 1]) continue;
			if (Q[i] - Q[i - 1] > 1)
			{
				s[++now] = Q[i - 1] + 1;
				e[now] = Q[i] - 1;
			}
			s[++now] = e[now] = Q[i];
		}
		point = 0;
		Splay_tree.son[0][0] = Splay_tree.son[1][0] = Splay_tree.parent[0] = Splay_tree.Size[0] = Splay_tree.val[0] = Splay_tree.num[0] = 0;
		Splay_tree.Build(root, 1, now, 0);
		printf("Case %d:\n", cas);
		rep(i, 1, q)
			if (st[i][0] == 'T') Splay_tree.Top(T[i]);
			else if (st[i][0] == 'Q') printf("%d\n", Splay_tree.Find_rank(T[i]));
			else printf("%d\n", Splay_tree.Find_num(root, T[i]));
	}
}
posted on 2017-10-06 12:54  WizardCowboy  阅读(169)  评论(0编辑  收藏  举报