Problem
每次找到最小值,然后把它和它前面的数翻转,然后找第二小数······
然后输出这些数的下标。
Solution
用splay维护,每次找到最小值,然后翻转前面区间。
Notice
细节操作巨烦无比。
Code
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 100000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int point = 0, root, pre, suf, ans, x[N + 5];
struct Node
{
int val, id;
}T[N + 5];
struct node
{
int val[N + 5], son[2][N + 5], parent[N + 5], Min[N + 5], Size[N + 5], rev[N + 5];
inline void up(int u)
{
Size[u] = Size[son[0][u]] + Size[son[1][u]] + 1;
Min[u] = val[u];
if (son[0][u]) Min[u] = min(Min[u], Min[son[0][u]]);
if (son[1][u]) Min[u] = min(Min[u], Min[son[1][u]]);
}
inline void down(int u)
{
if (rev[u])
{
swap(son[0][u], son[1][u]);
rev[son[0][u]] ^= 1, rev[son[1][u]] ^= 1;
rev[u] = 0;
}
}
void Newnode(int &u, int from, int v)
{
u = ++point;
son[0][u] = son[1][u] = 0;
Min[u] = val[u] = v;
Size[u] = 1, rev[u] = 0;
parent[u] = from;
}
void Build(int &u, int l, int r, int from)
{
int mid = (l + r) >> 1;
Newnode(u, from, x[mid]);
if (l < mid) Build(son[0][u], l, mid - 1, u);
if (r > mid) Build(son[1][u], mid + 1, r, u);
up(u);
}
void Init(int n)
{
root = point = 0;
son[0][0] = son[1][0] = parent[0] = Size[0] = rev[0] = 0;
Min[0] = val[0] = N;
Newnode(root, 0, N);
Newnode(son[1][root], root, N);
Build(son[0][son[1][root]], 1, n, son[1][root]);
up(son[1][root]);
up(root);
}
void Rotate(int x, int &rt)
{
int y = parent[x], z = parent[y];
int l = (son[1][y] == x), r = 1 - l;
if (y == rt) rt = x;
else if (son[0][z] == y) son[0][z] = x;
else son[1][z] = x;
parent[x] = z;
parent[son[r][x]] = y, son[l][y] = son[r][x];
parent[y] = x, son[r][x] = y;
up(y), up(x);
}
void Splay(int x, int &rt)
{
while (x != rt)
{
int y = parent[x], z = parent[y];
down(z), down(y), down(x);
if (y != rt)
{
if ((son[0][z] == y) ^ (son[0][y] == x))
Rotate(x, rt);
else Rotate(y, rt);
}
Rotate(x, rt);
}
}
void Delete(int x)
{
Splay(x, root);
if (son[0][x] * son[1][x] == 0) root = son[0][x] + son[1][x];
else
{
down(x);
int t = son[1][x];
down(t);
while (son[0][t] != 0) t = son[0][t], down(t);
Splay(t, root);
son[0][t] = son[0][x], parent[son[0][x]] = t;
up(t);
}
parent[root] = 0;
}
int Find(int u, int num)
{
if (num == Size[son[0][u]] + 1) return u;
else if (num <= Size[son[0][u]]) return Find(son[0][u], num);
else return Find(son[1][u], num - Size[son[0][u]] - 1);
}
int Find_Min(int u, int tt)
{
down(u);
if (val[u] == tt) return Size[son[0][u]] + 1;
else if (Min[son[0][u]] == tt) return Find_Min(son[0][u], tt);
else return Size[son[0][u]] + 1 + Find_Min(son[1][u], tt);
}
}Splay_tree;
int cmp(Node X, Node Y)
{
return X.val < Y.val ||(X.val == Y.val && X.id < Y.id);
}
int sqz()
{
int n;
while (scanf("%d", &n) && n)
{
rep(i, 1, n) T[i].val = read(), T[i].id = i;
sort(T + 1, T + n + 1, cmp);
rep(i, 1, n) x[T[i].id] = i;
Splay_tree.Init(n);
rep(i, 1, n - 1)
{
int t = Splay_tree.Find_Min(root, i);
printf("%d ", t + i - 2);
Splay_tree.Splay(Splay_tree.Find(root, 1), root);
Splay_tree.Splay(Splay_tree.Find(root, t), Splay_tree.son[1][root]);
Splay_tree.rev[Splay_tree.son[0][Splay_tree.son[1][root]]] ^= 1;
Splay_tree.Delete(Splay_tree.Find(root, t));
}
printf("%d\n", n);
}
}