Problem

0 结束操作
1 K P 将一个数K以优先级P加入
2 取出优先级最高的那个数
3 取出优先级最低的那个数

Solution

Splay模板题

Notice

是输出数而不是输出优先级。

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 1000000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int point = 0, root;
struct node
{
	int val[N + 5], son[2][N + 5], parent[N + 5], label[N + 5];

	void Rotate(int x, int &rt)
	{
		int y = parent[x], z = parent[y];
		int l = (son[1][y] == x), r = 1 - l;
		if (y == rt) rt = x;
		else if (son[0][z] == y) son[0][z] = x;
		else son[1][z] = x;
		parent[x] = z;
		parent[son[r][x]] = y, son[l][y] = son[r][x];
		parent[y] = x, son[r][x] = y;
	}

	void Splay(int x, int &rt)
	{
		while (x != rt)
		{
			int y = parent[x], z = parent[y];
			if (y != rt)
			{
				if ((son[0][z] == y) ^ (son[0][y] == x))
					Rotate(x, rt);
				else Rotate(y, rt);
			}
			Rotate(x, rt);
		}
	}

	void Insert(int &u, int x, int y, int last)
	{
		if (u == 0)
		{
			u = ++point;
			val[u] = y, parent[u] = last, label[u] = x;
			Splay(u, root);
		}
		else
		{
			if (y > val[u]) Insert(son[1][u], x, y, u);
			else if (y < val[u]) Insert(son[0][u], x, y, u);
		}
	}

	void Delete(int x)
	{
		Splay(x, root);
		if (son[0][x] * son[1][x] == 0) root = son[0][x] + son[1][x];
		else
		{
			int t = son[1][x];
			while (son[0][t] != 0) t = son[0][t];
			Splay(t, root);
			son[0][t] = son[0][x], parent[son[0][x]] = t;
		}
		parent[root] = 0;
	}

	int Find_max()
	{
	    int t = root;
	    while (son[1][t] != 0) t = son[1][t];
	    return t;
	}

	int Find_min()
	{
	    int t = root;
	    while (son[0][t] != 0) t = son[0][t];
	    return t;
	}
}Splay_tree;
int main()
{
    int H_H;
    while (~scanf("%d", &H_H) && H_H)
    {
        int x, y;
        switch (H_H)
        {
            case 1:
                x = read(), y = read();
                Splay_tree.Insert(root, x, y, 0);
                break;
            case 2:
                x = Splay_tree.Find_max();
                printf("%d\n", Splay_tree.label[x]);
                Splay_tree.Delete(x);
                break;
            case 3:
                y = Splay_tree.Find_min();
                printf("%d\n", Splay_tree.label[y]);
                Splay_tree.Delete(y);
                break;
        }
    }
}
posted on 2017-10-05 12:24  WizardCowboy  阅读(157)  评论(0编辑  收藏  举报