[排列组合]做题记录-古代猪文
这就是传说中的数论全家桶么……
用到了Lucas定理,中国剩余定理,欧拉定理
大体而言可以拆数发现999911658=2*3*4679*35617
然后跑四遍CRT即可
#include<cstdio> #include<cstring> #include<string> #include<cmath> #define WR WinterRain using namespace std; const long long WR=10010000,mod=999911659; long long tot,bs,val; long long g[WR],b[5]={0,2,3,4679,35617},a[5]; long long read(){ long long s=0,w=1; char ch=getchar(); while(ch>'9'||ch<'0'){ if(ch=='-') w=-1; ch=getchar(); } while(ch>='0'&&ch<='9'){ s=(s<<3)+(s<<1)+ch-48; ch=getchar(); } return s*w; } long long quick_pow(long long a,long long b,long long md){ long long ans=1,base=a; while(b>0){ if(b&1) ans=ans*base%md; base=base*base%md; b>>=1; } return ans; } long long comb(long long n,long long m,long long md){ if(n<m) return 0; return g[n]*quick_pow(g[m],md-2,md)*quick_pow(g[n-m],md-2,md); } long long Lucas(long long n,long long m,long long md){ if(!n) return 1; if(n<m) return 0; return comb(n%md,m%md,md)*Lucas(n/md,m/md,md)%md; } void CRT(long long n,long long md){ for(long long i=1;i<=n;i++){ val=(val+a[i]*(md/b[i])%md*quick_pow(md/b[i],b[i]-2,b[i])%md)%md; } } int main(){ tot=read(),bs=read(); g[0]=1; /*long long tmp=mod-1; for(long long i=2;i<=sqrt(tmp);i++){ if(tmp%i==0){ bool f=true; for(long long j=2;j<=sqrt(i);j++){ if(i%j==0){ f=false; break; } } if(f){ prlong longf("%d\n",i); tmp/=i; } } } printf("%lld",tmp);*/ for(long long i=1;i<=4;i++){ for(long long j=1;j<=b[i];j++) g[j]=g[j-1]*j%b[i]; for(long long j=1;j<=sqrt(tot);j++){ if(tot%j==0){ a[i]=(a[i]+Lucas(tot,j,b[i]))%b[i]; if(j*j!=tot) a[i]=(a[i]+Lucas(tot,tot/j,b[i]))%b[i]; } } } CRT(4,mod-1); printf("%lld",quick_pow(bs,val,mod)); return 0; }
本文来自博客园,作者:冬天丶的雨,转载请注明原文链接:https://www.cnblogs.com/WintersRain/p/16247827.html
为了一切不改变的理想,为了改变不理想的一切