人工神经网络

      人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连 接的关系,从而达到处理信息的目的。
      人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
  所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
  如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

 

      二十世纪六十年代,AI系统在复制人脑的某些关键方面似乎大有前途。通过使用数理逻辑,科学家开始重现和推理现实世界的知识,但是,很快这种方法沦为AI的枷锁。尽管数理逻辑在模拟人脑(解决问题)方面富有成效,但是它在本质上并不适合处理不确定性。
      经过因自我枷锁造成的漫长封杀之后,AI这个广受诟病的领域却重新兴盛起来。多明戈斯并非唯一对其抱有全新信心的科学家。研究者希望通过成熟的电脑 系统来检测婴儿疾病,把口头语言翻译成文本,甚至是找出恶意核爆。这些由成熟的电脑系统展现出来的早期能力就是最初在AI界引起人们广泛兴趣的东西:即使 在纷繁复杂的世界,电脑仍具有像人类一样的推理能力。

处于AI复兴核心的是一种叫概率性程序的技术,它在旧有AI的逻辑基础上加入统计概率的应用。“它是两种最强大的理论的自然统一,这两种理论已经被 发展来理解和推导这个世界。”史都华·罗素说,他是加州大学伯克利校区现代人工智能方面的先驱。这套强大的综合体终于开始驱散笼罩在AI漫长严冬上的迷 雾。“这肯定会是一个(AI的)春天。”麻省理工学院的认知科学家约什·田纳邦说。

 

     1980年代末神经网络的到来让AI的解冻露出第一线曙光。神经网络的想法之简单让人惊叹。神经系统科学的发展带来了神经元的简单模型,加上算法的改进, 研究者构建了人工神经网络(ANNs)。表面上,它能够像真正的大脑一样学习。受到鼓舞的计算机科学家开始梦想有上百万或者上万亿神经元的ANNs。可是 很快地,事实证明我们的神经元模型显然过于简单,研究者都分不清神经元的哪些方面的性质是重要的,更不用说模仿它们了。

 

      不过,神经网络为新的AI领域构筑了一部分基础。一些继续在ANNs上奋斗的研究者终于意识到这些网络可以被认为是在统计和概率方面对外部世界的重 现。与“突触”和“动作电位”这些生理学上的称呼不同,他们称之为“参数化”和“随机变量”。田纳邦说,“现在,ANNs听起来更像一个庞大的概率模型而 不是一颗大脑。”

      然后在1988年,加州大学洛杉矶校区的朱迪亚·珀儿写了一本里程碑式的书《智能系统的或然性推理》,里面详细地描述了AI的全新方案。支持这本书 的理论是汤玛斯·贝叶斯提出的一个原理。汤玛斯·贝叶斯 是18世纪的一名英国数学家和牧师,他把以事件Q发生为前提下事件P发生的条件概率和以事件P发生为前提下事件Q发生的条件概率联系起来。这个原理提供了 一个在原因和结果间来回推导的方法。“如果你能对感兴趣的不同事物用那样的方式描述,那么贝叶斯推论的数学方法会教你如何通过观察结果,然后逆推各种不同 起因的可能性,”田纳邦如是说。

       新方案的关键就是贝叶斯网络,一个由各种随机变量组成的模型,在这个模型里每个变量的概率分布都取决于其他变量。给定一个或多个变量的值,通过贝叶 斯网络则可推导出其他变量的概率分布,换言之,得出他们的可能值 。假定这些变量表示症状、疾病和检查结果,给出检查结果(一种滤过性病毒感染)和症状(发热和咳嗽),则可给可能潜在的病因赋予不同的几率(流感,很可 能;肺炎,不太可能)。

       二十世纪九十年代中期,包括罗素在内的研究员开始开发算法,使贝叶斯网络能利用和学习现有的数据。这很大程度上跟人类基于早期理解的学习方式相同, 新的算法却能通过更少的数据来学习更复杂和更准确的模型。对ANNs来说,这是前进的一大步,因为无需考虑先验知识,可以从头学习解决新的问题。

        最近奥地利维也纳召开的联合国全面禁止核试条约组织(CTBTO)大会上,罗素展示了Church语言的表达能力。CTBTO邀请了罗素,因为他们预感到新的AI技术可能有助于监测核爆炸。听过一上午的关于监测地震背景下远距离核爆引发的地震特征、穿过地球的信号传播异常和世界地震站的噪音探测器的演示报告后,罗素开始着手用概率程序的设计(神经信息处理系统前沿,卷23,麻省理工学院出版Advances in Neural Information Processing Systems, vol 23, MIT Press)。他说,“在午饭时间,我已能为整个问题编写一个完整的模型。”,这个模型足足有半页之长。

 

这类模型能整合先验知识,例如,对印度尼西亚苏门塔腊和英国伯明翰地区发生地震的几率做比较。CTBTO同时要求任何一个系统首先假定发生在地球上 任何地方的核爆几率均等,然后才使用来自CTBTO监测站接收的真实信号数据。AI系统要做的就是获取所有数据,对每组数据最可能的解释作出推断。

挑战就在其中。像BLOG这样的语言是由所谓的通用推理机组成的。已知某个现实问题的模型和众多变量及概率分布,推理机只能计算某种情况的可能性, 例如,在已知期望事件的事前几率和新地震数据下,推断一次在中东发生的核爆。但是如果变量改成代表症状和疾病,那么它就必定能做出医学诊断。换言之,其中 的算法必须是非常普遍的,这也意味着这些算法极其低效。

       结果是,这些算法不得不根据每个新问题逐一定制。但正如罗素所说,你不能每遇到一个新问题就请一个博士学生来改进算法,“那并不是你大脑的工作方式,你的大脑会赶紧适应(新问题)。”

这一点让罗素、田纳邦和其他人缓下来仔细考虑AI的前途。“我希望人们会感到兴奋,但不是那种我们向他们推销蛇油(万灵药)的感觉,”罗素说。田纳 邦也有同感,尽管已是一个年过40的科学家,他觉得只有一半的机会在他有生之年见证有效推理这一难题的解决。尽管计算机将运行得更快,算法会改进得更精 妙,他觉得“这些是比登月或者登火星更艰深的问题”。

无论如何,AI团体的意志并没有因此消沉。例如,斯坦福大学的达菲·柯勒正在用概率编程解决非常特殊的问题并且颇见成效。他与同在斯坦福的新生儿学专家安娜·潘和其他同事一起开发了名为PhysiScore的系统,可以预测一个早产儿是否有任何健康问题。这是个众所周知的难题,医生不能作出任何确定程度的预测,“这种预测却是对那个家庭唯一要紧事,”潘回应。

PhysiScore系统把多方面的因素考虑进去,诸如孕龄、出生体重,以及出生后数小时内的实时数据,包括心率、呼吸率和氧饱和度(Science Translation Medicine, DOI: 10.1126/scitranslmed.3001304)。“我们能够在头3个小时内得出哪些婴儿将来会健康,哪些可能患上严重的并发症,甚至是两周后会出现的并发症,”柯勒解释道。

 

       新生儿专家对PhysiScore这个系统感到兴奋,”潘说。作为一名医生,对于AI系统具有处理上百个变量并作出决定的能力,潘尤其满意。这种能力甚至让该系统超越了他们的人类同行。潘说:“这些工具能理解和运用一些我们医生和护士看不到的信号。”

       这正是多明戈斯一直对自动化医学诊断抱有信心的原因。其中一个著名例子是“快速医学参考,决策理论(QMR-DT)”,它是一个拥有600种重要疾 病和4000种相关症状模型的贝叶斯网络,其目标是根据一些症状推断可能疾病的几率。研究者已经针对特殊疾病的推理算法对QMR-DT进行微调,并且教会 该系统使用病人的档案。“人们对这些系统和真人医生做过比较,这些系统似乎更胜一筹,”多明戈斯说,“人类对自己的判断,包括诊断,不能保持一致的观点 (态度),而医生们不愿意放弃他们工作中这一有意思的部分是唯一让这些系统不能广泛应用的原因。”

       AI领域里的这些技术还有其他成就,其中一个瞩目的例子是语音识别,它已经由过去因经常出错备受嘲笑提升到今天令人惊讶的准确度(New Scientist, 27 April 2006, p26)。现在,医生可以口述病人档案,语音系统软件会把口述档案转换成电子文档,由此可以减少手写处方。另外,语言翻译也开始仿效语音识别系统的成功之处。

 

 

 

 

 

 

 

 


 

posted @ 2012-03-18 23:55  一根神棍研古今  阅读(1179)  评论(0编辑  收藏  举报
Web Counter