(压位)高精 思路 代码实现
看到了一篇不错的高精教程:(devillaw_zhc)
1.加法
就是 从个位开始 两个数字相加,如果有进位,就加到十位,再算十位相加,……
2.减法
也是从个位开始 两个数字相减,如果得到的数字小于 0,那么就加上 10,并且把被减数的十位减一,……
3.乘法
第一个数乘以第二个数的个位,写下来,右边与个位对齐,再与第二个数的十位相乘,右边与十位对齐,……
仔细想一想,会发现其实 第一个数 从右数起的第 i 位,不妨设为 2 乘以 第二个数从右数起的第 j 位,不妨设为 8,就相当于 2*10^(i-1) * 8*10^(j-1)
这个乘积所贡献的就是 答案从右数起的 第 i+j-1 位, 即 16 *10^(i+j-2) ,把 1 进位到 从右数起的第 i+j 位上,留下 6 . 即可。
4.除法
除法其实是减法的延伸,打个比方,24723 除以 123 。
按照人的做法,从高位开始一位一位取出被除数的数字
先是 2,判断是否小于 123, 小于那答案这一位就置 0
再取一位,24, 还是小于,答案这一位置0
再取一位,247,这时候比 123 大了,那就看能减多少个 123, 发现减 2 次之后比 123 小了,那么答案的第 3 位上就是2, 减剩下的数是 1
重复那个过程,取一位,12, 小于 123 ,答案这一位置 0
再取一位, 123, 不小于 123 了, 看能减多少个, 发现能减一个, 那么答案第 5 位就是 1
剩下的数为 0 , 而被除数的数也被取光了,运算结束。
答案为 00201 ,整理一下即为 201。
压位本质其实是一样的,只不过存储方式与输出方式有不同。
比如数 103
用十位的高精度存 a[0] = 3, a[1] = 3, a[2] = 0, a[3] = 1
用百位的高精度存 a[0] = 2, a[1] = 3, a[2] = 1
要注意的是输出的时候 a[1] 不能只输出一个 3, 而要输出 03.
代码实现
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int power = 1; //每次运算的位数为10的power次方,在这里定义为了方便程序实现 const int base = 10; //10的power次方。 //要压位的时候,只需改power 和 base即可,如压万位高精,那么power = 4, base = 10000 const int MAXL = 1001; //数组的长度。 char a[MAXL], b[MAXL]; struct num { int a[MAXL]; num() { memset(a, 0, sizeof(a)); } //初始化 num(char *s) //将一个字符串初始化为高精度数 { memset(a, 0, sizeof(a)); int len = strlen(s); a[0] = (len+power-1) / power; //数的长度 for (int i=0, t=0, w; i < len ;w *= 10, ++i) { if (i % power == 0) { w = 1, ++t; } a[t] += w * (s[i]-'0'); } //初始化数组,这里自己模拟一下,应该很容易懂的~ } void add(int k) { if (k || a[0]) a[ ++a[0] ] = k; } //在末尾添加一个数,除法的时候要用到 void re() { reverse(a+1, a+a[0]+1); } //把数反过来,除法的时候要用到 void print() //打印此高精度数 { printf("%d", a[ a[0] ]); //先打印最高位,为了压位 或者 该高精度数为0 考虑 for (int i = a[0]-1;i > 0;--i) printf("%0*d", power, a[i]); //这里"%0*d", power的意思是,必须输出power位,不够则前面用0补足 printf("\n"); } } p,q,ans; bool operator < (const num &p, const num &q) //判断小于关系,除法的时候有用 { if (p.a[0] < q.a[0]) return true; if (p.a[0] > q.a[0]) return false; for (int i = p.a[0];i > 0;--i) { if (p.a[i] != q.a[i]) return p.a[i] < q.a[i]; } return false; } num operator + (const num &p, const num &q) //加法,不用多说了吧,模拟一遍,很容易懂 { num c; c.a[0] = max(p.a[0], q.a[0]); for (int i = 1;i <= c.a[0];++i) { c.a[i] += p.a[i] + q.a[i]; c.a[i+1] += c.a[i] / base; c.a[i] %= base; } if (c.a[ c.a[0]+1 ]) ++c.a[0]; return c; } num operator - (const num &p, const num &q) //减法,也不用多说,模拟一遍,很容易懂 { num c = p; for (int i = 1;i <= c.a[0];++i) { c.a[i] -= q.a[i]; if (c.a[i] < 0) { c.a[i] += base; --c.a[i+1]; } } while (c.a[0] > 0 && !c.a[ c.a[0] ]) --c.a[0]; //我的习惯是如果该数为0,那么他的长度也是0,方便比较大小和在末尾添加数时的判断。 return c; } num operator * (const num &p, const num &q) //乘法,还是模拟一遍。。其实高精度就是模拟人工四则运算! { num c; c.a[0] = p.a[0]+q.a[0]-1; for (int i = 1;i <= p.a[0];++i) for (int j = 1;j <= q.a[0];++j) { c.a[i+j-1] += p.a[i]*q.a[j]; c.a[i+j] += c.a[i+j-1] / base; c.a[i+j-1] %= base; } if (c.a[ c.a[0]+1 ]) ++c.a[0]; return c; } num operator / (const num &p, const num &q) //除法,这里我稍微讲解一下 { num x, y; for (int i = p.a[0];i >= 1;--i) //从最高位开始取数 { y.add(p.a[i]); //把数添到末尾(最低位),这时候是高位在前,低位在后 y.re(); //把数反过来,变为统一的存储方式:低位在前,高位在后 while ( !(y < q) ) //大于等于除数的时候,如果小于的话,其实答案上的该位就是初始的“0” y = y - q, ++x.a[i]; //看能减几个除数,减几次,答案上该位就加几次。 y.re(); //将数反过来,为下一次添数做准备 } x.a[0] = p.a[0]; while (x.a[0] > 0 && !x.a[x.a[0]]) --x.a[0]; return x; } int main() { scanf("%s", a); scanf("%s", b); reverse(a, a+strlen(a)); reverse(b, b+strlen(b)); p = num(a), q = num(b); ans = p + q; ans.print(); ans = p - q; ans.print(); ans = p * q; ans.print(); ans = p / q; ans.print(); }