HDU 4773 (圆的反演)
题目:传送门
题目
题意:给定两个圆的半径和圆心,它们是相离的,在这两个圆外给定一个点p,输出所有过点p且与已知的两个
圆外切的圆。
思路
根据圆的反演的一些性质,可以将过点 p 的圆与已知两个圆外切转化为过点 p 的直线,与已知两个圆外切。
圆的反演的一些性质:
1、过反演中心的圆,反形(经过反演之后的图形)为不过反演中心的直线。
2、不过反演中心的直线,反形为过反演中心的圆。
3、不过反演中心的圆,反形也为不过反演中心的圆,并且反演中心为这两个互为反形的圆的位似中心。
4、相切两圆的反象仍相切,若切点恰是反演中心,则其反象为两平行线。
5、相离的两圆反演(反演中心不在圆上)后仍然相离;两圆相切,若反演中心在某圆上,则为反形为相切的直线与圆。
我们以 p 为反演中心,半径自设,然后对已知的两个圆反演,然后求两圆的外切线,将外切线反演为圆即为所求。
圆的反演:参考
#include <bits/stdc++.h> #define LL long long #define ULL unsigned long long #define UI unsigned int #define mem(i, j) memset(i, j, sizeof(i)) #define rep(i, j, k) for(int i = j; i <= k; i++) #define dep(i, j, k) for(int i = k; i >= j; i--) #define pb push_back #define make make_pair #define INF 0x3f3f3f3f #define inf LLONG_MAX #define PI acos(-1) #define fir first #define sec second #define lb(x) ((x) & (-(x))) #define dbg(x) cout<<#x<<" = "<<x<<endl; using namespace std; const int N = 1e6 + 5; const double eps = 1e-8; struct Point { double x, y; Point(double a = 1.0, double b = 1.0) : x(a), y(b) {} Point operator + (const Point &a) { return Point(x+a.x, y+a.y); } Point operator - (const Point &a) { return Point(x-a.x, y-a.y); } Point operator * (const double a) { return Point(a*x, a*y); } Point operator / (const double a) { return Point(a/x, a/y); } void Input() { scanf("%lf %lf", &x, &y); } void Output() { printf("%.8f %.8f\n", x, y); } }; struct Circle { Point o; double r; Circle(Point a = Point(), double b = 1.0) : o(a), r(b) { } Point getPoint(double alpha) { return o + Point(r*cos(alpha), r*sin(alpha)); } void Input() { o.Input(); scanf("%lf", &r); } void Output() { printf("%.8f %.8f %.8f\n", o.x, o.y, r); } }; double dis(Point a, Point b) { return sqrt((a.x-b.x) * (a.x-b.x) + (a.y-b.y) * (a.y-b.y)); } double Cross(Point a, Point b, Point c) { return (b.x-a.x)*(c.y-a.y) - (c.x-a.x)*(b.y-a.y); } double Cross(Point a, Point b) { return a.x*b.y - a.y*b.x; } double Dot(Point a, Point b, Point c) { return (b.x-a.x)*(c.x-a.x) + (b.y-a.y)*(c.y-a.y); } int dcmp(double x) { return (x > eps) - (x < -eps); } Point Point_Inver(Circle c0,Point P){ Point OP = P - c0.o; double len = dis(c0.o,P); len = len*len; return c0.o + OP*( c0.r * c0.r / len ); } Circle Circle_Inver(Circle c0,Circle a){ Circle res; Point OA = a.o - c0.o; double len = dis(a.o,c0.o); Point up = c0.o + OA * ( ( len + a.r) / len ); Point down = c0.o + OA *( (len - a.r) / len ); up = Point_Inver(c0,up); down = Point_Inver(c0,down); res.o = (up+down) * 0.5; res.r = dis(up,down) * 0.5; return res; } Circle Line_Inver(Circle c0,Point a,Point b){ Circle res = Circle(); double d = fabs(Cross(a,c0.o,b) / dis(a,b)); res.r = c0.r * c0.r / (2.0 * d); double len = Dot(a,b,c0.o) / dis(a,b); Point AB = b - a; Point c = a + AB * (len/dis(a,b)); Point CO = c - c0.o; res.o = c0.o + CO * (res.r/d); //double len = dis(a,c[1].o); //res.o = c0.o + (a-c[1].o) * (res.r/len); return res; } Circle c[20]; Circle c0; int tot = 0; void solve() { c[0].Input(); c[1].Input(); c0.o.Input(); c0.r = 5.00; Point p = c0.o; c[0] = Circle_Inver(c0, c[0]); c[1] = Circle_Inver(c0, c[1]); if(c[1].r > c[0].r) swap(c[0], c[1]); Point v = c[1].o - c[0].o; double alpha = atan2(v.y, v.x); double d = dis(c[0].o, c[1].o); double beta = acos((c[0].r - c[1].r) / d); int k = 2; Point a = c[0].getPoint(alpha + beta); Point b = c[1].getPoint(alpha + beta); if(dcmp(Cross(a, c[0].o, b)) == dcmp(Cross(a, p, b)) && dcmp(Cross(a, c[1].o, b)) == dcmp(Cross(a, p, b))) c[++k] = Line_Inver(c0, a, b); a = c[0].getPoint(alpha - beta); b = c[1].getPoint(alpha - beta); if(dcmp(Cross(a, c[0].o, b)) == dcmp(Cross(a, p, b)) && dcmp(Cross(a, c[1].o, b)) == dcmp(Cross(a, p, b))) c[++k] = Line_Inver(c0, a, b); printf("%d\n", k - 2); rep(i, 3, k) c[i].Output(); } int main() { int _; scanf("%d", &_); while(_--) solve(); // solve(); return 0; }
一步一步,永不停息