UVA 11178 Morley's Theorem (计算直线交点 + 向量旋转)
这题是刘汝佳老师书里的例题。P259
想了解二维几何基础的可以 戳
#include <bits/stdc++.h> #define LL long long #define mem(i, j) memset(i, j, sizeof(i)) #define rep(i, j, k) for(int i = j; i <= k; i++) #define dep(i, j, k) for(int i = k; i >= j; i--) #define pb push_back #define make make_pair #define INF INT_MAX #define inf LLONG_MAX #define PI acos(-1) using namespace std; const int N = 1e6 + 5; struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) { } /// 构造函数 }; typedef Point Vector; /// 向量+向量=向量, 点+向量=向量 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } ///点-点=向量 Vector operator - (Point A, Point B) { return Vector(A.x - B.x, A.y - B.y); } ///向量*数=向量 Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); } ///向量/数=向量 Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); } const double eps = 1e-10; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); } Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } Point getD(Point A, Point B, Point C) { Vector V1 = C - B; double a1 = Angle(A - B, V1); V1 = Rotate(V1, a1 / 3.0); Vector V2 = B - C; double a2 = Angle(A - C, V2); V2 = Rotate(V2, -a2 / 3.0); return GetLineIntersection(B, V1, C, V2); } int main() { int _; scanf("%d", &_); while(_--) { Point A, B, C, D, E, F; scanf("%lf %lf", &A.x, &A.y); scanf("%lf %lf", &B.x, &B.y); scanf("%lf %lf", &C.x, &C.y); D = getD(A, B, C); E = getD(B, C, A); F = getD(C, A, B); printf("%.6f %.6f %.6f %.6f %.6f %.6f\n", D.x, D.y, E.x, E.y, F.x, F.y); } return 0; }
一步一步,永不停息