混沌数学之Rössler(若斯叻)吸引子
若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程:
frac{dx(t)}{dt} = -y(t)-z(t)
frac{dy(t)}{dt} = x(t)+a*y(t)
frac{dz(t)}{dt} = b-c*z(t)+x(t)*z(t)
若斯叻方程没有解析解,但可利用龙格-库塔法求数值解并做图。
相关软件:混沌数学及其软件模拟
相关代码:
class RosslerAttractor : public DifferentialEquation { public: RosslerAttractor() { m_StartX = 1.0f; m_StartY = 2.0f; m_StartZ = 3.0f; m_ParamA = 0.15f; m_ParamB = 0.2f; m_ParamC = 10.0f; m_StepT = 0.01f; } void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ) { dX = -y - z; dY = x + m_ParamA*y; dZ = m_ParamB - m_ParamC*z + x*z; } bool IsValidParamA() const {return true;} bool IsValidParamB() const {return true;} bool IsValidParamC() const {return true;} };
相关截图: