数学图形之椭圆抛物面

上一节讲的是双曲抛物面,这节讲与之类似的椭圆抛物面.

抛物面是二次曲面的一种。抛物面有两种:椭圆抛物面双曲抛物面

椭圆抛物面在笛卡儿坐标系中的方程为:


z = \frac{x^2}{a^2} + \frac{y^2}{b^2}.

双曲抛物面在笛卡儿坐标系中的方程为:


z = \frac{x^2}{a^2} - \frac{y^2}{b^2}.

本文将展示几种生成椭圆抛物面算法和切图.使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815

(1)参数方程

#http://www.mathcurve.com/surfaces/alysseid/alysseid.shtml

vertices = D1:100 D2:100

v = from 0 to (PI*2) D1
u = from 0 to 5 D2

a = 2.0

x = u*cos(v)
y = 10 - pow(u, a)
z = u*sin(v)

(2)普通方程

vertices = dimension1:101 dimension2:101
x = from (-100) to (100) dimension1
z = from (-100) to (100) dimension2
y = (20000 - x^2 - z^2)*0.005

u = x/10
v = z/10

(3)椭圆

vertices = D1:100 D2:100
u = from 0 to (2*PI) D1
v = from 0 to 5 D2
a = rand2(1, 10)
b = rand2(1, 10)

x = v*a*cos(u)
y = v*v/2
z = v*b*sin(u)

(4)将抛物线绕中轴旋转生成的椭圆抛物面

vertices = D1:512 D2:100
u = from 0 to 5 D1
v = from 0 to (2*PI) D2

a = rand2(-1, 1)

x = u*cos(v)
y = a*(u*u - 25)
z = u*sin(v)

v = v*2

 

posted on 2014-08-21 09:16  叶飞影  阅读(12554)  评论(0编辑  收藏  举报