数学图形(1.8) 圆外旋轮线
外旋轮线(Epitrochoid) 是追踪附着在围绕半径为 R 的固定的圆外侧滚转的半径 r 的圆上的一个点而得到的转迹线,这个点距离外部滚动的圆的中心的距离是 d
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815
圆外旋轮线(随机圈)
vertices = 10000 a = rand2(1, 10) r = rand2(1, 10) m = a/r t = from 0 to (160*PI) x = r*[(m+1)*cos(t) - cos((m+1)*t)] y = r*[(m+1)*sin(t) - sin((m+1)*t)]
最初版本:这是我没有看数学方面的资源时写的版本.
vertices = 12000 a = rand2(8, 64) b = rand2(4, 64) c = a + b s = c / b o = rand2(4, b) i = from 0 to (100*2*PI) j = mod(i, 2*PI) k = mod(s*i, 2*PI) m = a*sin(j) n = a*cos(j) x = m + o*sin(k) y = n + o*cos(k)
圆外旋轮线(N圈)
vertices = 10000 a = 10.3 r = 5.1 m = a/r t = from 0 to (160*PI) x = r*[(m+1)*cos(t) - cos((m+1)*t)] y = r*[(m+1)*sin(t) - sin((m+1)*t)]
圆外旋轮线(10圈)
vertices = 1000 r = 10.0 m = 10 t = from 0 to (2*PI) x = r*[m*cos(t) - cos(m*t)] y = r*[m*sin(t) - sin(m*t)]
圆外旋轮面(10圈)
vertices = D1:512 D2:100 u = from 0 to (2*PI) D1 v = from -2.0 to 2.0 D2 r = 10.0 m = 10 x = r*[m*cos(u) - v*cos(m*u)] y = r*[m*sin(u) - v*sin(m*u)]