数学图形(1.7)圆内旋轮线
内旋轮线(hypotrochoid)是追踪附着在围绕半径为 R 的固定的圆内侧滚转的半径为 r 的圆上的一个点得到的转迹线,这个点到内部滚动的圆的中心的距离是 d。
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815
圆内旋轮线(随机圈)
vertices = 12000 a = rand2(1, 10) r = rand2(1, 10) d = rand2(0.5, 10) t = from 0 to (120*PI) x = (a - r)*cos(t) + d*cos((a/r - 1)*t) y = (a - r)*sin(t) - d*sin((a/r - 1)*t)
内旋轮线中不同参数设置可以生成一些固定的图形
三尖瓣线
vertices = 1000 r = 10.0 m = 2 t = from 0 to (5*PI) x = r*[m*cos(t) + cos(m*t)] y = r*[m*sin(t) - sin(m*t)]
星形线
vertices = 1000 r = 10.0 m = 1.5 t = from 0 to (5*PI) x = r*[m*cos(t) + cos(m*t)] y = r*[m*sin(t) - sin(m*t)]
5角星形
vertices = 1000 r = 10.0 m = 4 t = from 0 to (2*PI) x = r*[m*cos(t) + cos(m*t)] y = r*[m*sin(t) - sin(m*t)]
圆内旋轮线(5圈)
vertices = 12000 a = 10 r = 8 d = rand2(0.5, 10) t = from 0 to (8*PI) x = (a - r)*cos(t) + d*cos((a/r - 1)*t) y = (a - r)*sin(t) - d*sin((a/r - 1)*t)
圆内旋轮线(椭圆)
vertices = 12000 a = 10 r = 5 d = rand2(0.5, 10) t = from 0 to (2*PI) x = (a - r)*cos(t) + d*cos((a/r - 1)*t) y = (a - r)*sin(t) - d*sin((a/r - 1)*t)
椭圆面
vertices = D1:512 D2:100 u = from 0 to (PI*5) D1 v = from 0.0 to 1.0 D2 r = 10.0 m = 1 x = r*[m*cos(u) + v*cos(m*u)] y = r*[m*sin(u) - v*sin(m*u)]
三尖瓣面
vertices = D1:512 D2:100
u = from 0 to (PI*5) D1
v = from 0.0 to 1.0 D2
r = 10.0
m = 2
x = r*[m*cos(u) + v*cos(m*u)]
y = r*[m*sin(u) - v*sin(m*u)]
五星面
vertices = D1:512 D2:100 u = from 0 to (PI*5) D1 v = from 0.0 to 1.0 D2 r = 10.0 m = 1.5 x = r*[m*cos(u) + v*cos(m*u)] y = r*[m*sin(u) - v*sin(m*u)]
圆内旋轮面(5角星形)
vertices = D1:512 D2:100 u = from 0 to (PI*5) D1 v = from 0.0 to 1.0 D2 r = 10.0 m = 4 x = r*[m*cos(u) + v*cos(m*u)] y = r*[m*sin(u) - v*sin(m*u)]