数学图形(1.3)旋轮线

相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815

一个圆在一条定直线上滚动时,圆周上一个定点的轨迹,又称旋轮线

旋轮线

vertices = 1000
r = 10.0
t = from (-5*PI) to (5*PI)
x = r*(t - sin(t))
y = r*(1 - cos(t))

短幅旋轮线

vertices = 1000
r = 5.0
l = 3.0
t = from (-5*PI) to (5*PI)
x = r*t - l*sin(t)
y = r - l*cos(t)

长幅旋轮线

vertices = 1000
r = 5.0
l = 7.0
t = from (-5*PI) to (5*PI)
x = r*t - l*sin(t)
y = r - l*cos(t)

 面的形式

vertices = D1:512 D2:100

u = from (-5*PI) to (5*PI) D1
v = from 0.0 to 2.0 D2

r = 10.0
x = r*(u - v*sin(u))
y = r*(1.0 - v*cos(u))

 

旋轮线不只可以在一条直线上滚动,还可以在圆内,圆外,以及其他图形上滚动.这将使其变得很复杂.

在后面的章节中我会介绍圆内旋轮线,圆外旋轮线.

 

这里先发个复杂点的旋轮线图形:

vertices = 12000
r = 10.0
t = from (0) to (2*PI)
x = r*(cos(t) - cos(80*t)*sin(t))
y = r*(sin(t) - 0.5*sin(80*t))

 

 

 

 

posted on 2014-07-04 12:52  叶飞影  阅读(4289)  评论(0编辑  收藏  举报