数学图形(1.3)旋轮线
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815
一个圆在一条定直线上滚动时,圆周上一个定点的轨迹,又称旋轮线。
旋轮线
vertices = 1000 r = 10.0 t = from (-5*PI) to (5*PI) x = r*(t - sin(t)) y = r*(1 - cos(t))
短幅旋轮线
vertices = 1000 r = 5.0 l = 3.0 t = from (-5*PI) to (5*PI) x = r*t - l*sin(t) y = r - l*cos(t)
长幅旋轮线
vertices = 1000 r = 5.0 l = 7.0 t = from (-5*PI) to (5*PI) x = r*t - l*sin(t) y = r - l*cos(t)
面的形式
vertices = D1:512 D2:100 u = from (-5*PI) to (5*PI) D1 v = from 0.0 to 2.0 D2 r = 10.0 x = r*(u - v*sin(u)) y = r*(1.0 - v*cos(u))
旋轮线不只可以在一条直线上滚动,还可以在圆内,圆外,以及其他图形上滚动.这将使其变得很复杂.
在后面的章节中我会介绍圆内旋轮线,圆外旋轮线.
这里先发个复杂点的旋轮线图形:
vertices = 12000 r = 10.0 t = from (0) to (2*PI) x = r*(cos(t) - cos(80*t)*sin(t)) y = r*(sin(t) - 0.5*sin(80*t))