《计算机视觉入门》

主要分为几个部分:opencv入门+tensorflow入门、穿插numpy+matplotlib入门知识、最后来一个股票小案例

1.安装tensorflow1.10和opencv3.3.1:

安装tensorflow和opencv:

pip install --upgrade --ignore-installed tensorflow==1.10 -i https://pypi.douban.com/simple/
pip install python-opencv -i https://pypi.douban.com/simple/

测试安装是否成功:

#1.tensorflow测试
import tensorflow as tf
hello = tf.constant("hello tf")
sess = tf.Session()
print( sess.run(hello) )
#1.opencv测试
import cv2 as cv
print("hello opencv")

2.opencv入门:

#(一)opencv图片读取与展示
import cv2 
#imread完成了什么?
#1.数据读取  2.封装格式解析  3.数据解码  4。数据加载
img = cv2.imread("image0.jpg", 1)#1.读取图片,后面1代表彩色图片,0代表灰度
cv2.imshow("image", img)#2.展示图片,第一个是窗体名称,第二个是数据
cv2.waitKey(0)#3.暂停展示

#(二)图片的写入
import cv2
img = cv2.imread("image0.jpg", 1)
cv2.imwrite(("image_demo.jpg"), img)#写入:1 name 2 data数据

#(三)图片的质量  jpg图片 有损压缩
import cv2
img = cv2.imread('image0.jpg', 1)
#图片质量在imwrite里[cv2.IMWRITE_JPEG_QUALITY, 0到100]
#压缩率在0%到100%(0-100)
#是有损压缩,压缩率越大,图片越好
cv2.imwrite('image_demo1.jpg', img, [cv2.IMWRITE_JPEG_QUALITY, 50])

#(四)图片的质量  png图片 无损压缩 
import cv2
img = cv2.imread('image0.jpg', 1)
#png图片处理:cv2.IMWRITE_PNG_COMPRESSION使用压缩比COMPRESSION
#压缩比:范围0-9,越小,图片越好
cv2.imwrite('image_demo1.png', img, [cv2.IMWRITE_PNG_COMPRESSION, 0])

#(五)像素操作基础
#1.什么是像素:一个个像素点
#2.像素点由RGB3种颜色组成,RGB 3个颜色通道:R G B
#3.RGB3种颜色 颜色深度:8bit 0-255
#4.图片宽高:像素点个数
#5.图片大小计算:宽 x 高 x 3 x 8 bit ->  除8 -> B --> M
#6.png图片可能还有RGB alpha(透明度)
#7.除了RGB还可能是bgr格式(蓝,绿, 红)
#opencv读取格式:bgr格式

#(六)像素读取、写入
#像素读取写入:img[y轴, x轴]
import cv2
#1.读取data   2.像素读取   3.像素写入
img = cv2.imread("image0.jpg", 1)
(b, g, r) = img[100, 100]#读取100,100处像素点
print(b, g, r)
#绘制一条横的直线(326,325)->(326, 425)
for i in range(325, 426):
    img[326, i] = (255, 0, 0)#一条蓝色的线
cv2.imshow('image', img)
cv2.waitKey(0)

3.tensorflow入门:

#(一)定义常量,变量
import tensorflow as tf
data1 = tf.constant(2.5, dtype=tf.float32)#定义常量(data, 类型)
data2 = tf.Variable(10, name="var")#定义变量(data, name)
print(data1)
print(data2)
'''
sess = tf.Session()
#变量必须初始化
init = tf.global_variables_initializer()#变量必须初始化
sess.run(init)#变量必须初始化再用session跑一下
print(sess.run(data1))
print(sess.run(data2))
sess.close()

#tensorflow本质 = tensor op 计算图
#1.tensor = 数据 = data1 、data2
#2.op = 操作符 +-×÷
#3.计算图 = 对于数据的操作
#session = 交互核心

'''
#代码优化
sess = tf.Session()
init = tf.global_variables_initializer()#变量初始化
with sess:
    sess.run(init)
    print(sess.run(data1))
    print(sess.run(data2))


#(二)常量的四则运算
import tensorflow as tf
sess = tf.Session()
data1 = tf.constant(2)
data2 = tf.constant(6)
dataAdd = tf.add(data1, data2)#加
dataSub = tf.subtract(data1, data2)#减
dataMul = tf.multiply(data1, data2)#乘
dataDiv = tf.divide(data1, data2)#除
with sess:
    print(sess.run(dataAdd))
    print(sess.run(dataSub))
    print(sess.run(dataMul))
    print(sess.run(dataDiv))
print('end')


#(三)变量的四则运算
import tensorflow as tf
sess = tf.Session()
data1 = tf.constant(2)
data2 = tf.Variable(6)#变量
dataAdd = tf.add(data1, data2)#加
#追加dataAdd的结果放到data2中 = 将dataAdd值赋给data2
datacopy = tf.assign(data2, dataAdd)#追加:dataAdd->data2
dataSub = tf.subtract(data1, data2)#减
dataMul = tf.multiply(data1, data2)#乘
dataDiv = tf.divide(data1, data2)#除
#变量初始化
init = tf.global_variables_initializer()
with sess:
    sess.run(init)#变量初始化
    print(sess.run(dataAdd))
    print(sess.run(dataSub))
    print(sess.run(dataMul))
    print(sess.run(dataDiv))
    print('sess.run(datacopy)',sess.run(datacopy))#此时已完成:将8赋值 -> data2
    print('datacopy.eval()',datacopy.eval())#datacopy.eval() = sess.run(datacopy)
    #为10因为 datacopy = dataAdd = data1 + data2,此时data2 = 8,所以8+2 = 10
    #同时这时候将10赋值 -> data2
    print('tf.get_default_session().run(datacopy)',tf.get_default_session().run(datacopy))
    #tf.get_default_session()获取默认session
    #12 = 10+2
    #同时这时候将12赋值 -> data2
    print('这时data2=',sess.run(data2))
print('end')


#(四)tensorflow矩阵运算
#矩阵 == 数组 == N行N列
#[ [列数据] ]
#[ [6,6] ]一行两列
import tensorflow as tf
data1 = tf.constant([[6,6]])
data2 = tf.constant([[2],
                     [2]])
data3 = tf.constant([[3,3]])
data4 = tf.constant([[1,2],
                     [3,4],
                     [5,6]])
print(data4.shape)#矩阵维度shape
with tf.Session() as sess:
    #行和列都是从0开始
    print(sess.run(data4))#打印全部
    print(sess.run(data4[0]))#打印某一行
    print(sess.run(data4[:,0]))#打印某一列
    print(sess.run(data4[0,0]))#打印某一行某一列


#(五)矩阵的加法和乘法
import tensorflow as tf
data1 = tf.constant([[6,6]])
data2 = tf.constant([[2],
                     [2]])
data3 = tf.constant([[3,3]])
data4 = tf.constant([[1,2],
                     [3,4],
                     [5,6]])
#区分普通乘法和矩阵乘法
matMul = tf.matmul(data1, data2)#矩阵乘法
matMul2 = tf.multiply(data1, data2)#普通乘法
matAdd = tf.add(data1, data3)#矩阵加法
with tf.Session() as sess:
    print(sess.run(matMul))
    print(sess.run(matAdd))
    print(sess.run(matMul2))#普通乘法 1x2 2x1 = 2x2
    print(sess.run([matMul, matMul2]))#一次打印多个值
print('end!')


#(六)定义空矩阵、单位矩阵、填充矩阵、随机矩阵
import tensorflow as tf
#方法1
mat0 = tf.constant([[0,0], [0,0]])#2x2 空矩阵
#方法2
mat00 = tf.zeros([2,2])#2x2 空矩阵
mat1 = tf.ones([2,2])#单位矩阵:全1
matt = tf.fill([2,2], 15)#用15去填充矩阵
matt2 = tf.zeros_like(matt)#与matt相同维度的全0矩阵
mat_line = tf.linspace(0.0, 2.0, 11)#将0到2之间数据分成相等10份
mat_random = tf.random_uniform([2,2], -1, 2)#-1到2之间,2x2随机矩阵
with tf.Session() as sess:
    print(sess.run(mat0))
    print(sess.run(mat00))
    print(sess.run(mat1))
    print(sess.run(matt))
    print(sess.run(matt2))
    print(sess.run(mat_line))
    print(sess.run(mat_random))
print('end!')

4.numpy入门:

#使用numpy模块
import numpy as np
data1 = np.array([1,2,3,4,5])#1x5
print(data1)
data2 = np.array([[1,2],
                  [3,4]])
print(data2)
print(data2.shape)
data3 = np.zeros([2,2])#全0矩阵
data4 = np.ones([2,2])#全1矩阵
print(data3)
print(data4)
#矩阵的修改和查找
#行列都是从0开始
data2[1,1] = 5#修改最后一个元素
print(data2)
print(data2[1,1])
#矩阵基本运算
data5 = np.ones([2,2])
print(data5*2)#每个元素都乘一次
print(data5/2)#每个元素都除一次
#两个矩阵间运算
data6 = np.array([[1,2],
                  [3,4]])
print(data5+data6)#对应相加
print(data5*data6)#对应相乘

5.matplotlib入门:

#使用matplotlib模块:折线plot,饼状,柱状bar
import matplotlib.pyplot as plt
import numpy as np
#折线图
x = np.array([1,2,3,4,5,6,7,8])
y = np.array([2,8,7,16,5,5,7,66])
plt.plot(x, y, 'b', lw=10)#1 x轴 2 y轴 3 color 4线宽度
plt.show()
#柱状图
x = np.array([1,2,3,4,5,6,7,8])
y = np.array([2,8,7,16,5,5,7,66])
plt.bar(x, y, 0.9, alpha=1, color='g')#1 x轴 2 y轴 3 柱宽比例 4透明度 5颜色
plt.show()

6.人工智能股票小案例:

首先来了解一下什么是神经网络:分为输入层->隐藏层->输出层

 

股票小案例神经网络构成:

 

还是没搞清楚b1这里为啥是【1,10】而不是【15,10】,按道理说A*w1以后已经-->是一个15*10的矩阵了

 

整体就是通过不断梯度下降法求出最佳的:w1   w2   b1   b2

 

代码:

#0.导入模块
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

#1.数据准备+绘图
date = np.linspace(1, 15, 15)#定义天数
#定义收盘价格
endPrice = np.array([2511.90,2538.26,2510.68,2591.66,2732.98,
                     2701.69,2701.29,2678.67,2726.50,2681.50,2739.17,2715.07,2823.58,2864.90,2919.08])
#定义开盘价格
beginPrice = np.array([2438.71,2500.88,2534.95,2512.52,2594.04,2743.26,2697.47,2695.24,
                       2678.23,2722.13,2674.93,2744.13,2717.46,2832.73,2877.40])

print(date)
#绘图
plt.figure()
for i in range(0, 15):
    #柱状图
    dateOne = np.zeros([2])
    dateOne[0] = i
    dateOne[1] = i
    priceOne = np.zeros([2])
    priceOne[0] = beginPrice[i]
    priceOne[1] = endPrice[i]
    if endPrice[i] > beginPrice[i]:
        plt.plot(dateOne, priceOne, 'r', lw=8)
        #例如:相当于x轴都是第1天,y轴是[2438.71,2511.90]一个1×2矩阵
        #x轴:[1, 1]  y轴:[2438.71至2511.90]
    else:
        plt.plot(dateOne, priceOne, 'g', lw=8)

#2.人工神经网络:
# A(15x1)*w1(1x10)+b1(1*10) = B(15x10)  (不懂b1这里为啥是【1,10】而不是【15,10】)
# B(15x10)*w2(10x1)+b2(15x1) = C(15x1)
#2.1输入层准备
date_t = np.zeros([15,1])
price_t = np.zeros([15,1])
for i in range(0, 15):
    date_t[i,0] = i/14.0
    price_t[i,0] = endPrice[i]/3000.0
x = tf.placeholder(tf.float32, [None,1])
y = tf.placeholder(tf.float32, [None,1])

#2.2隐藏层准备
w1 = tf.Variable(tf.random_uniform([1,10],0,1))
#还是没搞清楚b1这里为啥是【1,10】而不是【15,10】
b1 = tf.Variable(tf.zeros([1,10]))
wb1 = tf.matmul(x,w1)+b1
lay1 = tf.nn.relu(wb1)#激励函数 
w2 = tf.Variable(tf.random_uniform([10,1],0,1))
b2 = tf.Variable(tf.zeros([15,1]))
wb2 = tf.matmul(lay1,w2)+b2
lay2 = tf.nn.relu(wb2)#激励函数

#输出层准备
loss = tf.reduce_mean(tf.square(y-lay2))#损失函数loss:真实结果-实验结果
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

#3代码测试
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(10000):
        sess.run(train_step, feed_dict={x:date_t,y:price_t})
    nowp = sess.run(lay2, feed_dict={x:date_t})
    nowPrice = np.zeros([15,1])
    for i in range(0,15):
        nowPrice[i,0] = (nowp*3000)[i,0]
    print(nowPrice)
    plt.plot(date,nowPrice,'b',lw=2)
plt.show()

结果: 

posted @ 2020-02-13 23:12  Kimishima-Kana  阅读(345)  评论(0编辑  收藏  举报