Log system architecture
0. 技术选型参考
1. Collector
Keywords: Collector, Processor
名称 | Beats | Fluentd-bit |
---|---|---|
Introduction | Beats are a collector and processor of lightweight (resource efficient, no dependencies, small) and open source log shippers that act as agents installed on the different servers in your infrastructure for collecting logs or metrics. | Fluent Bit was born to address the need for a high performance and optimized tool that can collect and process data from any input source, unify that data and deliver it to multiple destinations. |
Owner | Elastic | Treasure Data |
Open Source | True | True |
Github Stars | 5742 | 608 |
License | Apache License v2.0 | Apache License v2.0 |
Scope | Containers / Servers / K8S | Containers / Servers / K8S |
Language | Go | C |
Memory | ~10MB | ~500KB |
Performance | High | High |
Dependencies | Zero dependencies, unless some special plugin requires them. | Zero dependencies, unless some special plugin requires them. |
Category | Auditbeat,Filebeat,Heartbeat,Metricbeat,Packetbeat,Winlogbeat | NaN |
Configuration | File(.yml)/Cmd | File(custom file extension and syntax)/Cmd |
Essence | Collector & Processor | Collector & Processor |
Input/Module | File, Docker, Syslog, Nginx, Mysql, Postgresql, etc | File,CPU, Disk, Docker, Syslog, etc |
Output | Elasticsearch, Logstash, Kafka, Redis, File, Console | ES, File, Kafka, etc |
1.1 Filebeat 架构图
- Ingest Node - A es plugin which pre-process documents before the actual document indexing happen and replace for Logstash. The ingest node intercepts bulk and index requests, it applies transformations, and it then passes the documents back to the index or bulk APIs. Define a pipeline(Processors) that specifies a series of processors, then register the pipeline id in Filebeat configuration file.
- Kafka - Prevent loss of data and manage logging output speed.
1.2 Fluent bit 架构图
Name | Description | Samples |
---|---|---|
Input | Entry point of data. Implemented through Input Plugins, this interface allows to gather or receive data. | Samples |
Parser | Parsers allow to convert unstructured data gathered from the Input interface into a structured one. Parsers are optional and depends on Input plugins. | Prospector and processors in Filebeat |
Filter | The filtering mechanism allows to alter the data ingested by the Input plugins. Filters are implemented as plugins. | Prospector and processors in Filebeat |
Buffer | By default, the data ingested by the Input plugins, resides in memory until is routed and delivered to an Output interface. | |
Routing | Data ingested by an Input interface is tagged, that means that a Tag is assigned and this one is used to determinate where the data should be routed based on a match rule. | |
Output | An output defines a destination for the data. Destinations are handled by output plugins. Note that thanks to the Routing interface, the data can be delivered to multiple destinations. | Samples |
2. Log Transporter
Keywords: Collector, Processor, Aggregator
名称 | Logstah | Fluentd |
---|---|---|
Introduction | Logstash is an open source, server-side data processing pipeline that ingests data from a multitude of sources simultaneously, transforms it, and then sends it to your stash. | Fluentd is an open source data collector, which lets you unify the data. |
Owner | Elastic | Treasure Data |
Open Source | True | True |
Github Stars | 9105 | 6489 |
License | Apache License v2.0 | Apache License v2.0 |
Scope | Containers / Servers / K8S | Containers / Servers / K8S |
Language | JRuby(JVM) | Ruby & C |
Memory | 200MB+ | ~40MB |
Performance | Middle | High |
Dependencies | JVM | Ruby Gem |
Configuration | File(custom file extension and syntax)/Cmd | File(custom file extension and syntax)/Cmd |
Essence | Collector, Processor, Aggregator | CCollector, Processor, Aggregator |
Input/Module | Limited only by your imagination(Serilog) | Limited only by your imagination(Nlog) |
Output | Limited only by your imagination | Limited only by your imagination |
Further Reading: Fluentd vs. Logstash: A Comparison of Log Collectors
3. 初步总结
比较 | Beats + Logstash | Fluentd bit + Fluentd | 说明 |
---|---|---|---|
功能实现 | √ | √ | 基本一致 |
安装与配置简易性 | √ | ||
内存占用 | √ | JVM 特性使然 | |
可靠性 | √ | √ | 前者使用 registry file + redis 实现可靠性,后者使用内置 buffering 实现可靠性 |
可扩展性 | √ | √ | 插件生态和可扩展性基本一致。后者为分布型插件管理 |
趋势 | √ | ELK -> EFK | |
其他 | √ | √ | 前者更倾向于使用 go & java 技术栈,后者有 docker, k8s 官方 log driver 类型和案例支持 |
Tips: 任一层级都可以自由替换.
4. Visualizer
Keywords: Query, Analyze, Monitor
名称 | Kibana | Grafana |
---|---|---|
Introduction | Kibana is an open source data visualization plugin for Elasticsearch. | Data visualization & Monitoring with support for Graphite, InfluxDB, Prometheus, Elasticsearch and many more databases.The leading open source software for time series analytics. |
Owner | Elastic | Grafana |
Open Source | True | True |
Github Stars | 9k+ | 22k+ |
License | Apache License v2.0 | Apache License v2.0 |
Scope | ElasticSearch only | ElasticSearch, InfluxDB, PostgreSQL etc |
Language | Javascript | Go & Typescript |
Configuration | File(.yml)/Cmd | File(custom file extension and syntax)/Cmd |
Simple Query | Lucene syntax and filter components | filter components.Different from each other data source |
Full-Text Query | Yes | No |
Security | Plugins or libraries | Integration |
Notification | Plugins or libraries | Integration |
Advantages | Log, ES | Multiple data source, APM, Timeseries |
Working together.
5. Log Storage and Analyzer
Keywords:Storage, ES, Postgresql, Zombodb, Arangodb
5.1 ElasticSearch
- 同时支持单文档的对象搜索+模糊搜索+全文搜索
- Skywalking 官方支持存储媒介
- 作为流行 Output 支持绝大部分 Log 相关系统
- 天生分布式
- 一键设置过期窗口,索引重建
- ……
- 占用资源较多,对存储介质要求高
- 运维成本更高
- 持久化
- 安全性 - Search Guard
- ……
6. 总结
- Sinks(Log sinks, Beats, Fluentd-bit) -> Storages(ElasticSearch, Postgresql,Zombodb etc).
- Collctors(Beats, Fluentd-bit) -> Kafka -> Fluentd -> Storages(ElasticSearch, Postgresql,Zombodb etc).
7. 扩展
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!