如何理解拓扑排序算法(转)

       对于一条有向边(u,v),定义u < v;满足所有这样条件的结点序列称为拓扑序列。拓扑排序就是求一个有向图的拓扑序列的算法。
一个有向图顶点的拓扑序列不是惟一的。并不是任何有向图的顶点都可以排成拓扑序列,有环图是不能排的。


例子:比如排课问题,比如士兵排队问题等。
         拓扑排序在实际生活中和算法中都有很大的应用。比如要排一下几门课程的先后次序,我们可以把课程抽象成结点,把什么课是什么课的基础抽象成边,那么该图的一个拓扑序列就是这些课的一个可行的先后次序。各种语言的编译器都用到了拓扑排序。
    数学基础:
        什么是拓扑排序(Topological Sort)?简单地说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
    回顾离散数学中关于偏序和全序的定义:
        若集合X上的关系R是自反的、反对称的和传递的,则称只是集合X上的偏序关系。
        设R是集合X上的偏序(Partial Order),如果对每个x,y∈X必有xRy或yRx,则称R是集合X上的全序关系。
        直观地看,偏序指集合中仅有部分成员之间可比较,而全序指集合中全体成员之间均可比较。[例如],图7.25所示的两个有向图,图中弧(x,y)表示x≤y,则(a)表示偏序,(b)表示全序。若在(a)的有向图上人为地加一个表示v2≤v3的弧(符号“≤”表示v2领先于v3),则(a)表示的亦为全序,且这个全序称为拓扑有序(Topological Order),而由偏序定义得到拓扑有序的操作便是拓扑排序。

     ToplogicalSort.gif 
AOV-网及其拓扑有序序列产生的过程
(a)AOV-网;(b)输出v6之后;(c)输出v1之后;(d)输出v4之后;(e)输出v3之后;(f)输出v2之后

    [思想]:
    一、从有向图中选取一个没有前驱的顶点,并输出之;
    二、从有向图中删去此顶点以及所有以它为尾的弧;
    重复上述两步,直至图空,或者图不空但找不到无前驱的顶点为止。没有前驱 -- 入度为零,删除顶点及以它为尾的弧-- 弧头顶点的入度减1。

Status Topological Sort(ALGraph G){
    //有向图G采用邻接表存储结构。
    //若G无回路,则输出G的顶点的1个拓扑序列并返回OK,否则ERROR。
        FindInDegree(G,indegree); //对各顶点求入度indegree[0..vernum-1]
        InitStack(S);
        for(i=0;i<G.vexnum; ++i)
        if(!indegree[i])Push(S,i) //建零入度顶点栈,s入度为0者进栈
        count=0//对输出顶点计数 
        while (!StackEmpty(S)) {
            Pop(S,i); 
            printf(i,G.vertices[i].data); ++count; //输出i号顶点并计数 
            for(p=G.vertices[i].firstarc;p; p=p—>nextarc) {
                k=p—>adivex; //对i号顶点的每个邻接点的入度减1
                if(!(--indegree[k]))Push(S,k);//若入度减为0,则入栈
            }//for
        }//while
        if(count<G.vexnum) return ERROR; //该有向图有回路
        else return OK;
    }//TopologicalSort 

 

思想:

 

维护一个顶点入度为0的栈,

 

每次取栈顶元素top输出,对于top相邻的点进行入度数-1处理,处理后如果度数为0,再次入栈.

 

执行n次出栈操作,便可输出一个图的拓扑序.

 

判断是否包含有向环:如果入度为0的栈为空(top==-1),则说明包含有向环.(证明:无环时总有点入度为0).

 

时间复杂度:

 

1.搜索入度为0的顶点,建栈所需时间O(n);

 

2.无有向环时,每个顶点入栈一次,出栈一次,每条边扫描一次且仅一次,时间复杂度O(m).

 

3.总复杂度:O(n+m).

算法 ,总的时间复杂度为O(n+e)。

 

作者: 自由、创新、研究、探索……
出处:http://shanyou.cnblogs.com/
版权:本文版权归作者和博客园共有
转载:欢迎转载,为了保存作者的创作热情,请按要求【转载】,谢谢
要求:未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任

 

 
posted @ 2017-12-15 14:34  曾先森在努力  阅读(684)  评论(0编辑  收藏  举报