NOIp2014 Day2T3 解方程 秦九韶算法

a0+a1*x+a2*x^2+a3*x^3...+an*x^n

=a0+x*(a1+x*(a2+x*(a2+...+x*(an+0) ) ) )

正好可以递归计算。

一个小技巧是过程在一个大质数的同余系中计算,没有降低太多正确性,却避免了高精度。(重要)

 1 #include<iostream>
 2 #include<cstdio>
 3 using namespace std;
 4 typedef long long ll;
 5 
 6 const int mod = 1e9+7;
 7 ll a[110],s[1000010];
 8 ll m,n,top;
 9 
10 ll read(){
11     ll a = 0;char c = getchar(),l = c;
12     while(c < '0'||c > '9')l = c,c = getchar();
13     while('0' <= c&&c <= '9')
14         a = (a*10+c-'0')%mod,c = getchar();
15     if(l == '-')return -a; return a;
16 }
17 
18 bool check(ll x){
19     ll s = 0;
20     for(int i = n;i >= 0;i--)s = (s*x+a[i])%mod;
21     return !s;
22 }
23 
24 int main(){
25     cin >> n >> m;
26     for(int i = 0;i <= n;i++)a[i] = read();
27     for(int i = 1;i <= m;i++)if(check(i))
28         s[++top] = i;
29     printf("%lld\n",top);
30     for(int i = 1;i <= top;i++)printf("%lld\n",s[i]); 
31 return 0;
32 }

 

posted @ 2019-11-02 16:59  TIH_HIT  阅读(180)  评论(0编辑  收藏  举报