cvpr 2020 best paper code 分析

model.py分析

import os
import math
import glob
import torch
import torch.nn as nn
import torchvision
from . import networks
from . import utils
from .renderer import Renderer


EPS = 1e-7


class Unsup3D():
    def __init__(self, cfgs):
        self.model_name = cfgs.get('model_name', self.__class__.__name__)
        self.device = cfgs.get('device', 'cpu')
        self.image_size = cfgs.get('image_size', 64)
        self.min_depth = cfgs.get('min_depth', 0.9)
        self.max_depth = cfgs.get('max_depth', 1.1)
        self.border_depth = cfgs.get('border_depth', (0.7*self.max_depth + 0.3*self.min_depth))
        self.min_amb_light = cfgs.get('min_amb_light', 0.)
        self.max_amb_light = cfgs.get('max_amb_light', 1.)
        self.min_diff_light = cfgs.get('min_diff_light', 0.)
        self.max_diff_light = cfgs.get('max_diff_light', 1.)
        self.xyz_rotation_range = cfgs.get('xyz_rotation_range', 60)
        self.xy_translation_range = cfgs.get('xy_translation_range', 0.1)
        self.z_translation_range = cfgs.get('z_translation_range', 0.1)
        self.use_conf_map = cfgs.get('use_conf_map', True)
        self.lam_perc = cfgs.get('lam_perc', 1)
        self.lam_flip = cfgs.get('lam_flip', 0.5)
        self.lam_flip_start_epoch = cfgs.get('lam_flip_start_epoch', 0)
        self.lam_depth_sm = cfgs.get('lam_depth_sm', 0)
        self.lr = cfgs.get('lr', 1e-4)
        self.load_gt_depth = cfgs.get('load_gt_depth', False)
        self.renderer = Renderer(cfgs)

        ## networks and optimizers
        self.netD = networks.EDDeconv(cin=3, cout=1, nf=64, zdim=256, activation=None)
        self.netA = networks.EDDeconv(cin=3, cout=3, nf=64, zdim=256)
        self.netL = networks.Encoder(cin=3, cout=4, nf=32)
        self.netV = networks.Encoder(cin=3, cout=6, nf=32)
        if self.use_conf_map:
            self.netC = networks.ConfNet(cin=3, cout=2, nf=64, zdim=128)
        self.network_names = [k for k in vars(self) if 'net' in k]
        self.make_optimizer = lambda model: torch.optim.Adam(
            filter(lambda p: p.requires_grad, model.parameters()),
            lr=self.lr, betas=(0.9, 0.999), weight_decay=5e-4)

        ## other parameters
        self.PerceptualLoss = networks.PerceptualLoss(requires_grad=False)
        self.other_param_names = ['PerceptualLoss']

        ## depth rescaler: -1~1 -> min_deph~max_deph
        self.depth_rescaler = lambda d : (1+d)/2 *self.max_depth + (1-d)/2 *self.min_depth
        self.amb_light_rescaler = lambda x : (1+x)/2 *self.max_amb_light + (1-x)/2 *self.min_amb_light
        self.diff_light_rescaler = lambda x : (1+x)/2 *self.max_diff_light + (1-x)/2 *self.min_diff_light

    def init_optimizers(self):
        self.optimizer_names = []
        for net_name in self.network_names:
            optimizer = self.make_optimizer(getattr(self, net_name))
            optim_name = net_name.replace('net','optimizer')
            setattr(self, optim_name, optimizer)
            self.optimizer_names += [optim_name]

    def load_model_state(self, cp):
        for k in cp:
            if k and k in self.network_names:
                getattr(self, k).load_state_dict(cp[k])

    def load_optimizer_state(self, cp):
        for k in cp:
            if k and k in self.optimizer_names:
                getattr(self, k).load_state_dict(cp[k])

    def get_model_state(self):
        states = {}
        for net_name in self.network_names:
            states[net_name] = getattr(self, net_name).state_dict()
        return states

    def get_optimizer_state(self):
        states = {}
        for optim_name in self.optimizer_names:
            states[optim_name] = getattr(self, optim_name).state_dict()
        return states

    def to_device(self, device):
        self.device = device
        for net_name in self.network_names:
            setattr(self, net_name, getattr(self, net_name).to(device))
        if self.other_param_names:
            for param_name in self.other_param_names:
                setattr(self, param_name, getattr(self, param_name).to(device))

    def set_train(self):
        for net_name in self.network_names:
            getattr(self, net_name).train()

    def set_eval(self):
        for net_name in self.network_names:
            getattr(self, net_name).eval()

    def photometric_loss(self, im1, im2, mask=None, conf_sigma=None):
        loss = (im1-im2).abs()
        if conf_sigma is not None:
            loss = loss *2**0.5 / (conf_sigma +EPS) + (conf_sigma +EPS).log()
        if mask is not None:
            mask = mask.expand_as(loss)
            loss = (loss * mask).sum() / mask.sum()
        else:
            loss = loss.mean()
        return loss

    def backward(self):
        for optim_name in self.optimizer_names:
            getattr(self, optim_name).zero_grad()
        self.loss_total.backward()
        for optim_name in self.optimizer_names:
            getattr(self, optim_name).step()

    def forward(self, input):
        """Feedforward once."""
        if self.load_gt_depth:
            input, depth_gt = input
        self.input_im = input.to(self.device) *2.-1.
        b, c, h, w = self.input_im.shape

        ## predict canonical depth, ok
        # networks.EDDeconv(cin=3, cout=1, nf=64, zdim=256, activation=None)
        self.canon_depth_raw = self.netD(self.input_im).squeeze(1)  # BxHxW
        self.canon_depth = self.canon_depth_raw - self.canon_depth_raw.view(b,-1).mean(1).view(b,1,1)
        self.canon_depth = self.canon_depth.tanh()
        self.canon_depth = self.depth_rescaler(self.canon_depth)

        ## optional depth smoothness loss (only used in synthetic car experiments), 
        # neighbor pixels are smooth in height and width
        self.loss_depth_sm = ((self.canon_depth[:,:-1,:] - self.canon_depth[:,1:,:]) /(self.max_depth-self.min_depth)).abs().mean()
        self.loss_depth_sm += ((self.canon_depth[:,:,:-1] - self.canon_depth[:,:,1:]) /(self.max_depth-self.min_depth)).abs().mean()

        ## clamp border depth, masked border,ok
        depth_border = torch.zeros(1,h,w-4).to(self.input_im.device)
        depth_border = nn.functional.pad(depth_border, (2,2), mode='constant', value=1)
        self.canon_depth = self.canon_depth*(1-depth_border) + depth_border *self.border_depth
        self.canon_depth = torch.cat([self.canon_depth, self.canon_depth.flip(2)], 0)  # flip, because depth is a 3-dim tensor

        ## predict canonical albedo, ok
        self.canon_albedo = self.netA(self.input_im)  # Bx3xHxW
        self.canon_albedo = torch.cat([self.canon_albedo, self.canon_albedo.flip(3)], 0)  # flip, albedo is a 4-dim tensor

        ## predict confidence map, share backbone, two-stream net
        if self.use_conf_map:
            conf_sigma_l1, conf_sigma_percl = self.netC(self.input_im)  # Bx2xHxW
            self.conf_sigma_l1 = conf_sigma_l1[:,:1]
            self.conf_sigma_l1_flip = conf_sigma_l1[:,1:]
            self.conf_sigma_percl = conf_sigma_percl[:,:1]
            self.conf_sigma_percl_flip = conf_sigma_percl[:,1:]
        else:
            self.conf_sigma_l1 = None
            self.conf_sigma_l1_flip = None
            self.conf_sigma_percl = None
            self.conf_sigma_percl_flip = None

        ####################################### II(^(a,d,l),d,w): ^(a,d,l); II(^,d,w) camera model
        # step 1:
        ## predict lighting, predict by NetL, 
        ## get: canon_light_a, canon_light_b, canon_light_d
        canon_light = self.netL(self.input_im).repeat(2,1)  # Bx4, self.netL = networks.Encoder(cin=3, cout=4, nf=32)
        self.canon_light_a = self.amb_light_rescaler(canon_light[:,:1])  # ambience term, 0, Ks, each pixel has a Ks?
        self.canon_light_b = self.diff_light_rescaler(canon_light[:,1:2])  # diffuse term, 1, Kd, each pixel has a Kd?
        canon_light_dxy = canon_light[:,2:], # 2 and 3
        self.canon_light_d = torch.cat([canon_light_dxy, torch.ones(b*2,1).to(self.input_im.device)], 1)
        self.canon_light_d = self.canon_light_d / ((self.canon_light_d**2).sum(1, keepdim=True))**0.5  # diffuse light direction

        ## shading
        # (canon_normal+canon_light_d+canon_light_a+canon_light_b)*canon_albedo
        self.canon_normal = self.renderer.get_normal_from_depth(self.canon_depth) #depth to norm, based on u, v directional normal vectors
        self.canon_diffuse_shading = (self.canon_normal * self.canon_light_d.view(-1,1,1,3)).sum(3).clamp(min=0).unsqueeze(1) # dot (n,l)
        canon_shading = self.canon_light_a.view(-1,1,1,1) + self.canon_light_b.view(-1,1,1,1)*self.canon_diffuse_shading # ks+kd.dot(n,l)
        self.canon_im = (self.canon_albedo/2+0.5) * canon_shading *2-1  #canon_albedo.canon_shading


        ############################ 
        # step 2: 
        ## predict viewpoint transformation
        self.view = self.netV(self.input_im).repeat(2,1)  # networks.Encoder(cin=3, cout=6, nf=32), R and T
        self.view = torch.cat([
            self.view[:,:3] *math.pi/180 *self.xyz_rotation_range, # 0,1,2
            self.view[:,3:5] *self.xy_translation_range,           # 3,4
            self.view[:,5:] *self.z_translation_range], 1)         # 5

        ## reconstruct input view
        self.renderer.set_transform_matrices(self.view)
        self.recon_depth = self.renderer.warp_canon_depth(self.canon_depth) #torch.Size([128, 64, 64])

        self.recon_normal = self.renderer.get_normal_from_depth(self.recon_depth) #torch.Size([128, 64, 64, 3]), get new normal as before
        grid_2d_from_canon = self.renderer.get_inv_warped_2d_grid(self.recon_depth) #torch.Size([128, 64, 64, 2]), new 2d grid because of wrap
        
        # grid_2d_from_canon is wrapped. we have to compute new a uniform quantized 2d grid (image)
        self.recon_im = nn.functional.grid_sample(self.canon_im, grid_2d_from_canon, mode='bilinear') #canon_im: torch.Size([128, 3, 64, 64])

        ## mask out boder pixels
        margin = (self.max_depth - self.min_depth) /2
        recon_im_mask = (self.recon_depth < self.max_depth+margin).float()  # invalid border pixels have been clamped at max_depth+margin
        recon_im_mask_both = recon_im_mask[:b] * recon_im_mask[b:]  # both original and flip reconstruction
        recon_im_mask_both = recon_im_mask_both.repeat(2,1,1).unsqueeze(1).detach()
        self.recon_im = self.recon_im * recon_im_mask_both

        #######################################

        ## render symmetry axis, for visualization?
        canon_sym_axis = torch.zeros(h, w).to(self.input_im.device)
        canon_sym_axis[:, w//2-1:w//2+1] = 1
        self.recon_sym_axis = nn.functional.grid_sample(canon_sym_axis.repeat(b*2,1,1,1), grid_2d_from_canon, mode='bilinear')
        self.recon_sym_axis = self.recon_sym_axis * recon_im_mask_both
        green = torch.FloatTensor([-1,1,-1]).to(self.input_im.device).view(1,3,1,1)
        self.input_im_symline = (0.5*self.recon_sym_axis) *green + (1-0.5*self.recon_sym_axis) *self.input_im.repeat(2,1,1,1)
        


        ## loss function
        self.loss_l1_im = self.photometric_loss(self.recon_im[:b], self.input_im, mask=recon_im_mask_both[:b], conf_sigma=self.conf_sigma_l1)
        self.loss_l1_im_flip = self.photometric_loss(self.recon_im[b:], self.input_im, mask=recon_im_mask_both[b:], conf_sigma=self.conf_sigma_l1_flip)
        self.loss_perc_im = self.PerceptualLoss(self.recon_im[:b], self.input_im, mask=recon_im_mask_both[:b], conf_sigma=self.conf_sigma_percl)
        self.loss_perc_im_flip = self.PerceptualLoss(self.recon_im[b:], self.input_im, mask=recon_im_mask_both[b:], conf_sigma=self.conf_sigma_percl_flip)
        lam_flip = 1 if self.trainer.current_epoch < self.lam_flip_start_epoch else self.lam_flip
        self.loss_total = self.loss_l1_im + lam_flip*self.loss_l1_im_flip + self.lam_perc*(self.loss_perc_im + lam_flip*self.loss_perc_im_flip) + self.lam_depth_sm*self.loss_depth_sm

        metrics = {'loss': self.loss_total}

        ## compute accuracy if gt depth is available
        if self.load_gt_depth:
            self.depth_gt = depth_gt[:,0,:,:].to(self.input_im.device)
            self.depth_gt = (1-self.depth_gt)*2-1
            self.depth_gt = self.depth_rescaler(self.depth_gt)
            self.normal_gt = self.renderer.get_normal_from_depth(self.depth_gt)

            # mask out background
            mask_gt = (self.depth_gt<self.depth_gt.max()).float()
            mask_gt = (nn.functional.avg_pool2d(mask_gt.unsqueeze(1), 3, stride=1, padding=1).squeeze(1) > 0.99).float()  # erode by 1 pixel
            mask_pred = (nn.functional.avg_pool2d(recon_im_mask[:b].unsqueeze(1), 3, stride=1, padding=1).squeeze(1) > 0.99).float()  # erode by 1 pixel
            mask = mask_gt * mask_pred
            self.acc_mae_masked = ((self.recon_depth[:b] - self.depth_gt[:b]).abs() *mask).view(b,-1).sum(1) / mask.view(b,-1).sum(1)
            self.acc_mse_masked = (((self.recon_depth[:b] - self.depth_gt[:b])**2) *mask).view(b,-1).sum(1) / mask.view(b,-1).sum(1)
            self.sie_map_masked = utils.compute_sc_inv_err(self.recon_depth[:b].log(), self.depth_gt[:b].log(), mask=mask)
            self.acc_sie_masked = (self.sie_map_masked.view(b,-1).sum(1) / mask.view(b,-1).sum(1))**0.5
            self.norm_err_map_masked = utils.compute_angular_distance(self.recon_normal[:b], self.normal_gt[:b], mask=mask)
            self.acc_normal_masked = self.norm_err_map_masked.view(b,-1).sum(1) / mask.view(b,-1).sum(1)

            metrics['SIE_masked'] = self.acc_sie_masked.mean()
            metrics['NorErr_masked'] = self.acc_normal_masked.mean()

        return metrics

    def visualize(self, logger, total_iter, max_bs=25):
        b, c, h, w = self.input_im.shape
        b0 = min(max_bs, b)

        ## render rotations
        with torch.no_grad():
            v0 = torch.FloatTensor([-0.1*math.pi/180*60,0,0,0,0,0]).to(self.input_im.device).repeat(b0,1)
            canon_im_rotate = self.renderer.render_yaw(self.canon_im[:b0], self.canon_depth[:b0], v_before=v0, maxr=90).detach().cpu() /2.+0.5  # (B,T,C,H,W)
            canon_normal_rotate = self.renderer.render_yaw(self.canon_normal[:b0].permute(0,3,1,2), self.canon_depth[:b0], v_before=v0, maxr=90).detach().cpu() /2.+0.5  # (B,T,C,H,W)

        input_im = self.input_im[:b0].detach().cpu().numpy() /2+0.5
        input_im_symline = self.input_im_symline[:b0].detach().cpu() /2.+0.5
        canon_albedo = self.canon_albedo[:b0].detach().cpu() /2.+0.5
        canon_im = self.canon_im[:b0].detach().cpu() /2.+0.5
        recon_im = self.recon_im[:b0].detach().cpu() /2.+0.5
        recon_im_flip = self.recon_im[b:b+b0].detach().cpu() /2.+0.5
        canon_depth_raw_hist = self.canon_depth_raw.detach().unsqueeze(1).cpu()
        canon_depth_raw = self.canon_depth_raw[:b0].detach().unsqueeze(1).cpu() /2.+0.5
        canon_depth = ((self.canon_depth[:b0] -self.min_depth)/(self.max_depth-self.min_depth)).detach().cpu().unsqueeze(1)
        recon_depth = ((self.recon_depth[:b0] -self.min_depth)/(self.max_depth-self.min_depth)).detach().cpu().unsqueeze(1)
        canon_diffuse_shading = self.canon_diffuse_shading[:b0].detach().cpu()
        canon_normal = self.canon_normal.permute(0,3,1,2)[:b0].detach().cpu() /2+0.5
        recon_normal = self.recon_normal.permute(0,3,1,2)[:b0].detach().cpu() /2+0.5
        if self.use_conf_map:
            conf_map_l1 = 1/(1+self.conf_sigma_l1[:b0].detach().cpu()+EPS)
            conf_map_l1_flip = 1/(1+self.conf_sigma_l1_flip[:b0].detach().cpu()+EPS)
            conf_map_percl = 1/(1+self.conf_sigma_percl[:b0].detach().cpu()+EPS)
            conf_map_percl_flip = 1/(1+self.conf_sigma_percl_flip[:b0].detach().cpu()+EPS)

        canon_im_rotate_grid = [torchvision.utils.make_grid(img, nrow=int(math.ceil(b0**0.5))) for img in torch.unbind(canon_im_rotate, 1)]  # [(C,H,W)]*T
        canon_im_rotate_grid = torch.stack(canon_im_rotate_grid, 0).unsqueeze(0)  # (1,T,C,H,W)
        canon_normal_rotate_grid = [torchvision.utils.make_grid(img, nrow=int(math.ceil(b0**0.5))) for img in torch.unbind(canon_normal_rotate, 1)]  # [(C,H,W)]*T
        canon_normal_rotate_grid = torch.stack(canon_normal_rotate_grid, 0).unsqueeze(0)  # (1,T,C,H,W)

        ## write summary
        logger.add_scalar('Loss/loss_total', self.loss_total, total_iter)
        logger.add_scalar('Loss/loss_l1_im', self.loss_l1_im, total_iter)
        logger.add_scalar('Loss/loss_l1_im_flip', self.loss_l1_im_flip, total_iter)
        logger.add_scalar('Loss/loss_perc_im', self.loss_perc_im, total_iter)
        logger.add_scalar('Loss/loss_perc_im_flip', self.loss_perc_im_flip, total_iter)
        logger.add_scalar('Loss/loss_depth_sm', self.loss_depth_sm, total_iter)

        logger.add_histogram('Depth/canon_depth_raw_hist', canon_depth_raw_hist, total_iter)
        vlist = ['view_rx', 'view_ry', 'view_rz', 'view_tx', 'view_ty', 'view_tz']
        for i in range(self.view.shape[1]):
            logger.add_histogram('View/'+vlist[i], self.view[:,i], total_iter)
        logger.add_histogram('Light/canon_light_a', self.canon_light_a, total_iter)
        logger.add_histogram('Light/canon_light_b', self.canon_light_b, total_iter)
        llist = ['canon_light_dx', 'canon_light_dy', 'canon_light_dz']
        for i in range(self.canon_light_d.shape[1]):
            logger.add_histogram('Light/'+llist[i], self.canon_light_d[:,i], total_iter)

        def log_grid_image(label, im, nrow=int(math.ceil(b0**0.5)), iter=total_iter):
            im_grid = torchvision.utils.make_grid(im, nrow=nrow)
            logger.add_image(label, im_grid, iter)

        log_grid_image('Image/input_image_symline', input_im_symline)
        log_grid_image('Image/canonical_albedo', canon_albedo)
        log_grid_image('Image/canonical_image', canon_im)
        log_grid_image('Image/recon_image', recon_im)
        log_grid_image('Image/recon_image_flip', recon_im_flip)
        log_grid_image('Image/recon_side', canon_im_rotate[:,0,:,:,:])

        log_grid_image('Depth/canonical_depth_raw', canon_depth_raw)
        log_grid_image('Depth/canonical_depth', canon_depth)
        log_grid_image('Depth/recon_depth', recon_depth)
        log_grid_image('Depth/canonical_diffuse_shading', canon_diffuse_shading)
        log_grid_image('Depth/canonical_normal', canon_normal)
        log_grid_image('Depth/recon_normal', recon_normal)

        logger.add_histogram('Image/canonical_albedo_hist', canon_albedo, total_iter)
        logger.add_histogram('Image/canonical_diffuse_shading_hist', canon_diffuse_shading, total_iter)

        if self.use_conf_map:
            log_grid_image('Conf/conf_map_l1', conf_map_l1)
            logger.add_histogram('Conf/conf_sigma_l1_hist', self.conf_sigma_l1, total_iter)
            log_grid_image('Conf/conf_map_l1_flip', conf_map_l1_flip)
            logger.add_histogram('Conf/conf_sigma_l1_flip_hist', self.conf_sigma_l1_flip, total_iter)
            log_grid_image('Conf/conf_map_percl', conf_map_percl)
            logger.add_histogram('Conf/conf_sigma_percl_hist', self.conf_sigma_percl, total_iter)
            log_grid_image('Conf/conf_map_percl_flip', conf_map_percl_flip)
            logger.add_histogram('Conf/conf_sigma_percl_flip_hist', self.conf_sigma_percl_flip, total_iter)

        logger.add_video('Image_rotate/recon_rotate', canon_im_rotate_grid, total_iter, fps=4)
        logger.add_video('Image_rotate/canon_normal_rotate', canon_normal_rotate_grid, total_iter, fps=4)

        # visualize images and accuracy if gt is loaded
        if self.load_gt_depth:
            depth_gt = ((self.depth_gt[:b0] -self.min_depth)/(self.max_depth-self.min_depth)).detach().cpu().unsqueeze(1)
            normal_gt = self.normal_gt.permute(0,3,1,2)[:b0].detach().cpu() /2+0.5
            sie_map_masked = self.sie_map_masked[:b0].detach().unsqueeze(1).cpu() *1000
            norm_err_map_masked = self.norm_err_map_masked[:b0].detach().unsqueeze(1).cpu() /100

            logger.add_scalar('Acc_masked/MAE_masked', self.acc_mae_masked.mean(), total_iter)
            logger.add_scalar('Acc_masked/MSE_masked', self.acc_mse_masked.mean(), total_iter)
            logger.add_scalar('Acc_masked/SIE_masked', self.acc_sie_masked.mean(), total_iter)
            logger.add_scalar('Acc_masked/NorErr_masked', self.acc_normal_masked.mean(), total_iter)

            log_grid_image('Depth_gt/depth_gt', depth_gt)
            log_grid_image('Depth_gt/normal_gt', normal_gt)
            log_grid_image('Depth_gt/sie_map_masked', sie_map_masked)
            log_grid_image('Depth_gt/norm_err_map_masked', norm_err_map_masked)

    def save_results(self, save_dir):
        b, c, h, w = self.input_im.shape

        with torch.no_grad():
            v0 = torch.FloatTensor([-0.1*math.pi/180*60,0,0,0,0,0]).to(self.input_im.device).repeat(b,1)
            canon_im_rotate = self.renderer.render_yaw(self.canon_im[:b], self.canon_depth[:b], v_before=v0, maxr=90, nsample=15)  # (B,T,C,H,W)
            canon_im_rotate = canon_im_rotate.clamp(-1,1).detach().cpu() /2+0.5
            canon_normal_rotate = self.renderer.render_yaw(self.canon_normal[:b].permute(0,3,1,2), self.canon_depth[:b], v_before=v0, maxr=90, nsample=15)  # (B,T,C,H,W)
            canon_normal_rotate = canon_normal_rotate.clamp(-1,1).detach().cpu() /2+0.5

        input_im = self.input_im[:b].detach().cpu().numpy() /2+0.5
        input_im_symline = self.input_im_symline.detach().cpu().numpy() /2.+0.5
        canon_albedo = self.canon_albedo[:b].detach().cpu().numpy() /2+0.5
        canon_im = self.canon_im[:b].clamp(-1,1).detach().cpu().numpy() /2+0.5
        recon_im = self.recon_im[:b].clamp(-1,1).detach().cpu().numpy() /2+0.5
        recon_im_flip = self.recon_im[b:].clamp(-1,1).detach().cpu().numpy() /2+0.5
        canon_depth = ((self.canon_depth[:b] -self.min_depth)/(self.max_depth-self.min_depth)).clamp(0,1).detach().cpu().unsqueeze(1).numpy()
        recon_depth = ((self.recon_depth[:b] -self.min_depth)/(self.max_depth-self.min_depth)).clamp(0,1).detach().cpu().unsqueeze(1).numpy()
        canon_diffuse_shading = self.canon_diffuse_shading[:b].detach().cpu().numpy()
        canon_normal = self.canon_normal[:b].permute(0,3,1,2).detach().cpu().numpy() /2+0.5
        recon_normal = self.recon_normal[:b].permute(0,3,1,2).detach().cpu().numpy() /2+0.5
        if self.use_conf_map:
            conf_map_l1 = 1/(1+self.conf_sigma_l1[:b].detach().cpu().numpy()+EPS)
            conf_map_l1_flip = 1/(1+self.conf_sigma_l1_flip[:b].detach().cpu().numpy()+EPS)
            conf_map_percl = 1/(1+self.conf_sigma_percl[:b].detach().cpu().numpy()+EPS)
            conf_map_percl_flip = 1/(1+self.conf_sigma_percl_flip[:b].detach().cpu().numpy()+EPS)
        canon_light = torch.cat([self.canon_light_a, self.canon_light_b, self.canon_light_d], 1)[:b].detach().cpu().numpy()
        view = self.view[:b].detach().cpu().numpy()

        canon_im_rotate_grid = [torchvision.utils.make_grid(img, nrow=int(math.ceil(b**0.5))) for img in torch.unbind(canon_im_rotate,1)]  # [(C,H,W)]*T
        canon_im_rotate_grid = torch.stack(canon_im_rotate_grid, 0).unsqueeze(0).numpy()  # (1,T,C,H,W)
        canon_normal_rotate_grid = [torchvision.utils.make_grid(img, nrow=int(math.ceil(b**0.5))) for img in torch.unbind(canon_normal_rotate,1)]  # [(C,H,W)]*T
        canon_normal_rotate_grid = torch.stack(canon_normal_rotate_grid, 0).unsqueeze(0).numpy()  # (1,T,C,H,W)

        sep_folder = True
        utils.save_images(save_dir, input_im, suffix='input_image', sep_folder=sep_folder)
        utils.save_images(save_dir, input_im_symline, suffix='input_image_symline', sep_folder=sep_folder)
        utils.save_images(save_dir, canon_albedo, suffix='canonical_albedo', sep_folder=sep_folder)
        utils.save_images(save_dir, canon_im, suffix='canonical_image', sep_folder=sep_folder)
        utils.save_images(save_dir, recon_im, suffix='recon_image', sep_folder=sep_folder)
        utils.save_images(save_dir, recon_im_flip, suffix='recon_image_flip', sep_folder=sep_folder)
        utils.save_images(save_dir, canon_depth, suffix='canonical_depth', sep_folder=sep_folder)
        utils.save_images(save_dir, recon_depth, suffix='recon_depth', sep_folder=sep_folder)
        utils.save_images(save_dir, canon_diffuse_shading, suffix='canonical_diffuse_shading', sep_folder=sep_folder)
        utils.save_images(save_dir, canon_normal, suffix='canonical_normal', sep_folder=sep_folder)
        utils.save_images(save_dir, recon_normal, suffix='recon_normal', sep_folder=sep_folder)
        if self.use_conf_map:
            utils.save_images(save_dir, conf_map_l1, suffix='conf_map_l1', sep_folder=sep_folder)
            utils.save_images(save_dir, conf_map_l1_flip, suffix='conf_map_l1_flip', sep_folder=sep_folder)
            utils.save_images(save_dir, conf_map_percl, suffix='conf_map_percl', sep_folder=sep_folder)
            utils.save_images(save_dir, conf_map_percl_flip, suffix='conf_map_percl_flip', sep_folder=sep_folder)
        utils.save_txt(save_dir, canon_light, suffix='canonical_light', sep_folder=sep_folder)
        utils.save_txt(save_dir, view, suffix='viewpoint', sep_folder=sep_folder)

        utils.save_videos(save_dir, canon_im_rotate_grid, suffix='image_video', sep_folder=sep_folder, cycle=True)
        utils.save_videos(save_dir, canon_normal_rotate_grid, suffix='normal_video', sep_folder=sep_folder, cycle=True)

        # save scores if gt is loaded
        if self.load_gt_depth:
            depth_gt = ((self.depth_gt[:b] -self.min_depth)/(self.max_depth-self.min_depth)).clamp(0,1).detach().cpu().unsqueeze(1).numpy()
            normal_gt = self.normal_gt[:b].permute(0,3,1,2).detach().cpu().numpy() /2+0.5
            utils.save_images(save_dir, depth_gt, suffix='depth_gt', sep_folder=sep_folder)
            utils.save_images(save_dir, normal_gt, suffix='normal_gt', sep_folder=sep_folder)

            all_scores = torch.stack([
                self.acc_mae_masked.detach().cpu(),
                self.acc_mse_masked.detach().cpu(),
                self.acc_sie_masked.detach().cpu(),
                self.acc_normal_masked.detach().cpu()], 1)
            if not hasattr(self, 'all_scores'):
                self.all_scores = torch.FloatTensor()
            self.all_scores = torch.cat([self.all_scores, all_scores], 0)

    def save_scores(self, path):
        # save scores if gt is loaded
        if self.load_gt_depth:
            header = 'MAE_masked, \
                      MSE_masked, \
                      SIE_masked, \
                      NorErr_masked'
            mean = self.all_scores.mean(0)
            std = self.all_scores.std(0)
            header = header + '\nMean: ' + ',\t'.join(['%.8f'%x for x in mean])
            header = header + '\nStd: ' + ',\t'.join(['%.8f'%x for x in std])
            utils.save_scores(path, self.all_scores, header=header)

render.py

import torch
import math
import neural_renderer as nr
from .utils import *


EPS = 1e-7


class Renderer():
    def __init__(self, cfgs):
        self.device = cfgs.get('device', 'cpu')
        self.image_size = cfgs.get('image_size', 64)
        self.min_depth = cfgs.get('min_depth', 0.9)
        self.max_depth = cfgs.get('max_depth', 1.1)
        self.rot_center_depth = cfgs.get('rot_center_depth', (self.min_depth+self.max_depth)/2)
        self.fov = cfgs.get('fov', 10)
        self.tex_cube_size = cfgs.get('tex_cube_size', 2)
        self.renderer_min_depth = cfgs.get('renderer_min_depth', 0.1)
        self.renderer_max_depth = cfgs.get('renderer_max_depth', 10.)

        #### camera intrinsics
        #             (u)   (x)
        #    d * K^-1 (v) = (y)
        #             (1)   (z)

        ## renderer for visualization
        R = [[[1.,0.,0.],
              [0.,1.,0.],
              [0.,0.,1.]]]
        R = torch.FloatTensor(R).to(self.device)
        t = torch.zeros(1,3, dtype=torch.float32).to(self.device)
        fx = (self.image_size-1)/2/(math.tan(self.fov/2 *math.pi/180))
        fy = (self.image_size-1)/2/(math.tan(self.fov/2 *math.pi/180))
        cx = (self.image_size-1)/2
        cy = (self.image_size-1)/2
        K = [[fx, 0., cx],
             [0., fy, cy],
             [0., 0., 1.]]
        K = torch.FloatTensor(K).to(self.device)
        self.inv_K = torch.inverse(K).unsqueeze(0)
        self.K = K.unsqueeze(0)
        self.renderer = nr.Renderer(camera_mode='projection',
                                    light_intensity_ambient=1.0,
                                    light_intensity_directional=0.,
                                    K=self.K, R=R, t=t,
                                    near=self.renderer_min_depth, far=self.renderer_max_depth,
                                    image_size=self.image_size, orig_size=self.image_size,
                                    fill_back=True,
                                    background_color=[1,1,1])

    def set_transform_matrices(self, view):
        self.rot_mat, self.trans_xyz = get_transform_matrices(view)

    def rotate_pts(self, pts, rot_mat):
        centroid = torch.FloatTensor([0.,0.,self.rot_center_depth]).to(pts.device).view(1,1,3)
        pts = pts - centroid  # move to centroid
        pts = pts.matmul(rot_mat.transpose(2,1))  # rotate
        pts = pts + centroid  # move back
        return pts

    def translate_pts(self, pts, trans_xyz):
        return pts + trans_xyz

    def depth_to_3d_grid(self, depth): #### 3, compute 2d grid--->3d depth, (x,y, depth), x\in [],y\in []
        b, h, w = depth.shape
        grid_2d = get_grid(b, h, w, normalize=False).to(depth.device)  # Nxhxwx2, torch.Size([128, 64, 64, 2])
        depth = depth.unsqueeze(-1) # torch.Size([128, 64, 64, 1])
        grid_3d = torch.cat((grid_2d, torch.ones_like(depth)), dim=3) # torch.Size([128, 64, 64, 3])
        grid_3d = grid_3d.matmul(self.inv_K.to(depth.device).transpose(2,1)) * depth
        return grid_3d

    def grid_3d_to_2d(self, grid_3d):
        b, h, w, _ = grid_3d.shape
        grid_2d = grid_3d / grid_3d[...,2:]
        grid_2d = grid_2d.matmul(self.K.to(grid_3d.device).transpose(2,1))[:,:,:,:2]
        WH = torch.FloatTensor([w-1, h-1]).to(grid_3d.device).view(1,1,1,2)
        grid_2d = grid_2d / WH *2.-1.  # normalize to -1~1
        return grid_2d

    def get_warped_3d_grid(self, depth):  #### 2
        b, h, w = depth.shape #torch.Size([128, 64, 64])
        grid_3d = self.depth_to_3d_grid(depth).reshape(b,-1,3) #torch.Size([128, 4096, 3]), has K_inv, 64x64 3D points
        grid_3d = self.rotate_pts(grid_3d, self.rot_mat)       # rotate and translate
        grid_3d = self.translate_pts(grid_3d, self.trans_xyz)  # the state of each imaget
        return grid_3d.reshape(b,h,w,3) # return 3d vertices

    def get_inv_warped_3d_grid(self, depth):
        b, h, w = depth.shape
        grid_3d = self.depth_to_3d_grid(depth).reshape(b,-1,3)
        grid_3d = self.translate_pts(grid_3d, -self.trans_xyz)          
        grid_3d = self.rotate_pts(grid_3d, self.rot_mat.transpose(2,1))
        return grid_3d.reshape(b,h,w,3) # return 3d vertices

    def get_warped_2d_grid(self, depth):
        b, h, w = depth.shape
        grid_3d = self.get_warped_3d_grid(depth)
        grid_2d = self.grid_3d_to_2d(grid_3d)
        return grid_2d

    def get_inv_warped_2d_grid(self, depth):
        b, h, w = depth.shape
        grid_3d = self.get_inv_warped_3d_grid(depth)
        grid_2d = self.grid_3d_to_2d(grid_3d)
        return grid_2d

    def warp_canon_depth(self, canon_depth):  #### 1
        b, h, w = canon_depth.shape
        grid_3d = self.get_warped_3d_grid(canon_depth).reshape(b,-1,3)  # get 3d vertices: including generate (x,y, z) mesh, reshape 
        faces = get_face_idx(b, h, w).to(canon_depth.device)            # mesh into 3d points, R and T transformations
        warped_depth = self.renderer.render_depth(grid_3d, faces)       # new depth

        # allow some margin out of valid range
        margin = (self.max_depth - self.min_depth) /2
        warped_depth = warped_depth.clamp(min=self.min_depth-margin, max=self.max_depth+margin)
        return warped_depth

    def get_normal_from_depth(self, depth):
        b, h, w = depth.shape
        grid_3d = self.depth_to_3d_grid(depth)

        tu = grid_3d[:,1:-1,2:] - grid_3d[:,1:-1,:-2]
        tv = grid_3d[:,2:,1:-1] - grid_3d[:,:-2,1:-1]
        normal = tu.cross(tv, dim=3)

        zero = torch.FloatTensor([0,0,1]).to(depth.device)
        normal = torch.cat([zero.repeat(b,h-2,1,1), normal, zero.repeat(b,h-2,1,1)], 2)
        normal = torch.cat([zero.repeat(b,1,w,1), normal, zero.repeat(b,1,w,1)], 1)
        normal = normal / (((normal**2).sum(3, keepdim=True))**0.5 + EPS)
        return normal

    def render_yaw(self, im, depth, v_before=None, v_after=None, rotations=None, maxr=90, nsample=9, crop_mesh=None):
        b, c, h, w = im.shape
        grid_3d = self.depth_to_3d_grid(depth)

        if crop_mesh is not None:
            top, bottom, left, right = crop_mesh  # pixels from border to be cropped
            if top > 0:
                grid_3d[:,:top,:,1] = grid_3d[:,top:top+1,:,1].repeat(1,top,1)
                grid_3d[:,:top,:,2] = grid_3d[:,top:top+1,:,2].repeat(1,top,1)
            if bottom > 0:
                grid_3d[:,-bottom:,:,1] = grid_3d[:,-bottom-1:-bottom,:,1].repeat(1,bottom,1)
                grid_3d[:,-bottom:,:,2] = grid_3d[:,-bottom-1:-bottom,:,2].repeat(1,bottom,1)
            if left > 0:
                grid_3d[:,:,:left,0] = grid_3d[:,:,left:left+1,0].repeat(1,1,left)
                grid_3d[:,:,:left,2] = grid_3d[:,:,left:left+1,2].repeat(1,1,left)
            if right > 0:
                grid_3d[:,:,-right:,0] = grid_3d[:,:,-right-1:-right,0].repeat(1,1,right)
                grid_3d[:,:,-right:,2] = grid_3d[:,:,-right-1:-right,2].repeat(1,1,right)

        grid_3d = grid_3d.reshape(b,-1,3)
        im_trans = []

        # inverse warp
        if v_before is not None:
            rot_mat, trans_xyz = get_transform_matrices(v_before)
            grid_3d = self.translate_pts(grid_3d, -trans_xyz)
            grid_3d = self.rotate_pts(grid_3d, rot_mat.transpose(2,1))

        if rotations is None:
            rotations = torch.linspace(-math.pi/180*maxr, math.pi/180*maxr, nsample)
        for i, ri in enumerate(rotations):
            ri = torch.FloatTensor([0, ri, 0]).to(im.device).view(1,3)
            rot_mat_i, _ = get_transform_matrices(ri)
            grid_3d_i = self.rotate_pts(grid_3d, rot_mat_i.repeat(b,1,1))

            if v_after is not None:
                if len(v_after.shape) == 3:
                    v_after_i = v_after[i]
                else:
                    v_after_i = v_after
                rot_mat, trans_xyz = get_transform_matrices(v_after_i)
                grid_3d_i = self.rotate_pts(grid_3d_i, rot_mat)
                grid_3d_i = self.translate_pts(grid_3d_i, trans_xyz)

            faces = get_face_idx(b, h, w).to(im.device)
            textures = get_textures_from_im(im, tx_size=self.tex_cube_size)
            warped_images = self.renderer.render_rgb(grid_3d_i, faces, textures).clamp(min=-1., max=1.)
            im_trans += [warped_images]
        return torch.stack(im_trans, 1)  # b x t x c x h x w

utils.py

import torch


def mm_normalize(x, min=0, max=1):
    x_min = x.min()
    x_max = x.max()
    x_range = x_max - x_min
    x_z = (x - x_min) / x_range
    x_out = x_z * (max - min) + min
    return x_out


def rand_range(size, min, max):
    return torch.rand(size)*(max-min)+min


def rand_posneg_range(size, min, max):
    i = (torch.rand(size) > 0.5).type(torch.float)*2.-1.
    return i*rand_range(size, min, max)


def get_grid(b, H, W, normalize=True):  ####
    if normalize:
        h_range = torch.linspace(-1,1,H)
        w_range = torch.linspace(-1,1,W)
    else:
        h_range = torch.arange(0,H)
        w_range = torch.arange(0,W)
    grid = torch.stack(torch.meshgrid([h_range, w_range]), -1).repeat(b,1,1,1).flip(3).float() # flip h,w to x,y
    return grid


def get_rotation_matrix(tx, ty, tz):
    m_x = torch.zeros((len(tx), 3, 3)).to(tx.device)
    m_y = torch.zeros((len(tx), 3, 3)).to(tx.device)
    m_z = torch.zeros((len(tx), 3, 3)).to(tx.device)

    m_x[:, 1, 1], m_x[:, 1, 2] = tx.cos(), -tx.sin()
    m_x[:, 2, 1], m_x[:, 2, 2] = tx.sin(), tx.cos()
    m_x[:, 0, 0] = 1

    m_y[:, 0, 0], m_y[:, 0, 2] = ty.cos(), ty.sin()
    m_y[:, 2, 0], m_y[:, 2, 2] = -ty.sin(), ty.cos()
    m_y[:, 1, 1] = 1

    m_z[:, 0, 0], m_z[:, 0, 1] = tz.cos(), -tz.sin()
    m_z[:, 1, 0], m_z[:, 1, 1] = tz.sin(), tz.cos()
    m_z[:, 2, 2] = 1
    return torch.matmul(m_z, torch.matmul(m_y, m_x))


def get_transform_matrices(view):
    b = view.size(0)
    if view.size(1) == 6:
        rx = view[:,0]
        ry = view[:,1]
        rz = view[:,2]
        trans_xyz = view[:,3:].reshape(b,1,3)
    elif view.size(1) == 5:
        rx = view[:,0]
        ry = view[:,1]
        rz = view[:,2]
        delta_xy = view[:,3:].reshape(b,1,2)
        trans_xyz = torch.cat([delta_xy, torch.zeros(b,1,1).to(view.device)], 2)
    elif view.size(1) == 3:
        rx = view[:,0]
        ry = view[:,1]
        rz = view[:,2]
        trans_xyz = torch.zeros(b,1,3).to(view.device)
    rot_mat = get_rotation_matrix(rx, ry, rz)
    return rot_mat, trans_xyz


def get_face_idx(b, h, w):
    idx_map = torch.arange(h*w).reshape(h,w)
    faces1 = torch.stack([idx_map[:h-1,:w-1], idx_map[1:,:w-1], idx_map[:h-1,1:]], -1).reshape(-1,3)
    faces2 = torch.stack([idx_map[:h-1,1:], idx_map[1:,:w-1], idx_map[1:,1:]], -1).reshape(-1,3)
    return torch.cat([faces1,faces2], 0).repeat(b,1,1).int()


def vcolor_to_texture_cube(vcolors):
    # input bxcxnx3
    b, c, n, f = vcolors.shape
    coeffs = torch.FloatTensor(
        [[ 0.5,  0.5,  0.5],
         [ 0. ,  0. ,  1. ],
         [ 0. ,  1. ,  0. ],
         [-0.5,  0.5,  0.5],
         [ 1. ,  0. ,  0. ],
         [ 0.5, -0.5,  0.5],
         [ 0.5,  0.5, -0.5],
         [ 0. ,  0. ,  0. ]]).to(vcolors.device)
    return coeffs.matmul(vcolors.permute(0,2,3,1)).reshape(b,n,2,2,2,c)


def get_textures_from_im(im, tx_size=1):
    b, c, h, w = im.shape
    if tx_size == 1:
        textures = torch.cat([im[:,:,:h-1,:w-1].reshape(b,c,-1), im[:,:,1:,1:].reshape(b,c,-1)], 2)
        textures = textures.transpose(2,1).reshape(b,-1,1,1,1,c)
    elif tx_size == 2:
        textures1 = torch.stack([im[:,:,:h-1,:w-1], im[:,:,:h-1,1:], im[:,:,1:,:w-1]], -1).reshape(b,c,-1,3)
        textures2 = torch.stack([im[:,:,1:,:w-1], im[:,:,:h-1,1:], im[:,:,1:,1:]], -1).reshape(b,c,-1,3)
        textures = vcolor_to_texture_cube(torch.cat([textures1, textures2], 2)) # bxnx2x2x2xc
    else:
        raise NotImplementedError("Currently support texture size of 1 or 2 only.")
    return textures

 

posted on 2021-09-27 10:52  一动不动的葱头  阅读(99)  评论(0编辑  收藏  举报

导航