最大获利 HYSBZ - 1497 (最大权闭合图)

最大权闭合图: 

有向图,每个点有点权,点权可正可负。对于任意一条有向边i和j,选择了点i就必须选择点j,你需要选择一些点使得得到权值最大。 

解决方法:

网络流

对于任意点i,如果i权值为正,s向i连容量为其权值的边,否则i向t连容量为其权值的绝对值德尔边。原图所有边容量为正无穷。则最大权=正权和-最大流。 

1497: [NOI2006]最大获利

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 6602  Solved: 3205
[Submit][Status][Discuss]

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

 

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

 

解析:

  就是一个板题 但既然两个论文都提到了 就做做吧

  把用户与s建边 容量为收益

  中转站与t建边 容量为花费

  用户与中转站建边 容量为INF

  答案就是所有收益的总和减去最大流

 为什么呢

  最大流就是满流的边的边权和

  然后画画图 知道了吧。。。

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _  ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1e6 + 10, INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, s, t;
int head[maxn], cnt, cur[maxn];
int d[maxn], vis[maxn];

struct node
{
    int u, v, c, next;
}Node[maxn << 1];

void add_(int u, int v, int c)
{
    Node[cnt].u = u;
    Node[cnt].v = v;
    Node[cnt].c = c;
    Node[cnt].next = head[u];
    head[u] = cnt++;
}

void add(int u, int v, int c)
{
    add_(u, v, c);
    add_(v, u, 0);
}

bool bfs()
{
    queue<int> Q;
    mem(d, 0);
    Q.push(s);
    d[s] = 1;
    while(!Q.empty())
    {
        int u = Q.front(); Q.pop();
        for(int i = head[u]; i != -1; i=Node[i].next)
        {
            node e = Node[i];
            if(!d[e.v] && e.c > 0)
            {
                d[e.v] = d[u] + 1;
                Q.push(e.v);
                if(e.v == t) return 1;
            }
        }
    }
    return d[t] != 0;
}

int dfs(int u, int cap)
{
    int ret = 0;
    if(u == t || cap == 0)
        return cap;
    for(int &i = cur[u]; i != -1; i = Node[i].next)
    {
        node e = Node[i];
        if(d[e.v] == d[u] + 1 && e.c > 0)
        {
            int V = dfs(e.v, min(cap, e.c));
            Node[i].c -= V;
            Node[i^1].c += V;
            ret += V;
            cap -= V;
            if(cap == 0) break;
        }
    }
    if(cap > 0) d[u] = -1;
    return ret;
}

int Dinic(int u)
{
    int ans = 0;
    while(bfs())
    {
        memcpy(cur, head, sizeof(head));
        ans += dfs(u, INF);
    }
    return ans;
}

void init()
{
    mem(head, -1);
    cnt = 0;
}

int main()
{
    init();
    int u, v, w;
    LL res = 0;
    cin >> n >> m;
    s = 0, t = n + m + 1;
    for(int i = 1; i <= n; i++)
    {
        cin >> w;
        add(i, t, w);
    }
    for(int i = 1; i <= m; i++)
    {
        cin >> u >> v >> w;
        res += w;
        add(n + i, u, INF);
        add(n + i, v, INF);
        add(s, n + i, w);
    }
    cout << res - Dinic(s) << endl;


    return 0;
}

 

  

 

posted @ 2018-10-05 22:11  WTSRUVF  阅读(218)  评论(0编辑  收藏  举报