bzoj 1801 [Ahoi2009]chess 中国象棋

1801: [Ahoi2009]chess 中国象棋

Time Limit: 10 Sec  Memory Limit: 64 MB

Description

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

Input

一行包含两个整数N,M,中间用空格分开.

Output

输出所有的方案数,由于值比较大,输出其mod 9999973

Sample Input

1 3

Sample Output

7

HINT

除了在3个格子中都放满炮的的情况外,其它的都可以.

100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6

Source

Day2

 

Tips:

  这是道很好的dp题,我讲不清楚还是看别人博客较好;

 

Code:

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#define MOD 9999973
using namespace std;
long long n,m,dp[108][108][108],ans;

int main(){
    scanf("%lld%lld",&n,&m);
    dp[0][0][0]=1;
    for(long long i=1;i<=n;i++)
    for(long long j=0;j<=m;j++)
    for(long long k=0;k<=m-j;k++){
        dp[i][j][k]=dp[i-1][j][k];
        if(j>=1) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-1][k]*(m-j-k+1))%MOD;            
        if(k-1>=0&&j+1<=m) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j+1][k-1]*(j+1))%MOD;
        if(j-2>=0) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-2][k]*(m-j-k+2)*(m-j-k+1)/2)%MOD;
        if(j+2<=m&&k-2>=0) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j+2][k-2]*(j+2)*(j+1)/2)%MOD;
        if(j>=1&&k+1<=m) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1]*(m-j-k+1)%MOD*j)%MOD;
        if(i==n) ans=(ans+dp[i][j][k])%MOD;
    }
    printf("%lld",ans);
}

 

 

posted @ 2017-09-17 18:40  JSC!  阅读(166)  评论(0编辑  收藏  举报