感知机模型实现

1、python自编程实现:

import numpy as np
import matplotlib.pyplot as plt

class MyPerceptron:
    def __init__(self):
        self.w=None  # 参数w的个数与x的特征数量对应,初始并不知道x的特征个数,故赋值None
        self.b=0
        self.l_rate=1  # 学习率 = 1

    def fit(self,X_train,y_train):
        #用样本点的特征数更新初始w,如x1=(3,3)T,有两个特征,则self.w=[0,0]
        self.w=np.zeros(X_train.shape[1])
        i=0
        while i<X_train.shape[0]:
            X=X_train[i]
            y=y_train[i]
            # 如果y*(wx+b)≤0 说明是误判点,更新w,b
            if y*(np.dot(self.w, X) + self.b) <= 0:
                self.w = self.w + self.l_rate * np.dot(y, X)
                self.b = self.b + self.l_rate * y
                i=0 #如果是误判点,从头进行检测
            else:
                i+=1

def draw(X,w,b):
    #生产分离超平面上的两点
    X_new=np.array([[0], [6]])
    y_predict=-b-(w[0]*X_new)/w[1]
    #绘制训练数据集的散点图
    plt.plot(X[:2,0],X[:2,1],"g*",label="1")
    plt.plot(X[2:,0], X[2:,0], "rx",label="-1")
    #绘制分离超平面
    plt.plot(X_new,y_predict,"b-")
    #设置两坐标轴起止值
    plt.axis([0,6,0,6])
    #设置坐标轴标签
    plt.xlabel('x1')
    plt.ylabel('x2')
    #显示图例
    plt.legend()
    #显示图像
    plt.show()

def main():
    # 构造训练数据集
    X_train=np.array([[3,3],[4,3],[1,1]])
    y_train=np.array([1,1,-1])
    # 构建感知机对象,对数据集继续训练
    perceptron=MyPerceptron()
    perceptron.fit(X_train,y_train)
    print(perceptron.w)
    print(perceptron.b)
    # 结果图像绘制
    draw(X_train,perceptron.w,perceptron.b)

if __name__=="__main__":
    main()

 2、调用sklearn实现:

from sklearn.linear_model import Perceptron
import numpy as np

X_train = np.array([[3, 3], [4, 3], [1, 1]])
y = np.array([1, 1, -1])

perceptron=Perceptron()
perceptron.fit(X_train,y)
print("w:",perceptron.coef_,"\n","b:",perceptron.intercept_,"\n","n_iter:",perceptron.n_iter_)

res=perceptron.score(X_train,y)
print("correct rate:{:.0%}".format(res))

 

参考:深度之眼《统计学习方法》课程--感知机课后作业

posted @ 2019-07-25 11:48  我叫郑小白  阅读(379)  评论(0编辑  收藏  举报