Project Euler 21 Distinct primes factors( 整数因子和 )
题意:
记d(n)为n的所有真因数(小于n且整除n的正整数)之和。
如果d(a) = b且d(b) = a,且a ≠ b,那么a和b构成一个亲和数对,a和b被称为亲和数。
例如,220的真因数包括1、2、4、5、10、11、20、22、44、55和100,因此d(220) = 284;而284的真因数包括1、2、4、71和142,因此d(284) = 220。
求所有小于10000的亲和数的和。
整数因子和:
<font color = red , size = 5 >**以下图片仅供学习!图片来源为海贼科技:
http://www.haizeix.com/
**
My Code :
/*************************************************************************
> File Name: euler021.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年06月30日 星期五 16时47分13秒
************************************************************************/
#include <stdio.h>
#include <inttypes.h>
#define MAX_RANGE 10000
int32_t isPrime[MAX_RANGE + 10] = {0}; // 存放数字i的最小素因子幂次项,例如isPrime[24] = 8
int32_t prime[MAX_RANGE + 10] = {0}; // 素数表
int32_t d[MAX_RANGE + 10] = {0}; // 存放数字i约数的和
void Init() {
for (int32_t i = 2 ; i <= MAX_RANGE ; i++) {
if (!isPrime[i]) {
isPrime[i] = i;
d[i] = i + 1;
prime[++prime[0]] = i;
}
for (int32_t j = 1 ; j <= prime[0] ; j++) {
if (i * prime[j] > MAX_RANGE) break;
if (i % prime[j] == 0) { // 如果prime[j]是i的最小素因子,那么就相当于在原来的基础上增加了一个最小的素因子,所以得改变原来的d[]
isPrime[i * prime[j]] = isPrime[i] * prime[j];
d[i * prime[j]] = d[i] * (isPrime[i] * prime[j] * prime[j] - 1) / (isPrime[i] * prime[j] - 1); // 更改最小素因子等比序列和
break;
} else {
isPrime[i * prime[j]] = prime[j]; // 因为prime[j]比i的最小素因子还小(线性筛原理),所以更新i * prime[j] 的最小素因子为prime[j]
d[i * prime[j]] = d[i] * d[prime[j]]; // i 和 prime[j]互素所以可以用约数和定理:若正整数A、B互素 C = A*B 则有F(C) = F(A) * F(B)(F(x)为x的约数和)
}
}
}
}
int32_t main() {
Init();
for (int32_t i = 1 ; i <= MAX_RANGE ; i++) {
d[i] -= i; // 并不包含自身
}
int32_t sum = 0;
printf("d[220] = %d\n",d[220]);
printf("d[284] = %d\n",d[284]);
for (int32_t i = 1 ; i <= MAX_RANGE ; i++) {
if (d[i] > MAX_RANGE) continue;
if (d[d[i]] == i && d[i] != i) { // 注意题目中要求 d(a) = b,d(b) = a,a!=b
sum += i;
}
}
printf("%d\n",sum);
return 0;
}
如要转载请注明转载出处:http://www.cnblogs.com/WArobot