Project Euler 15 Lattice paths


题意:在20×20方阵中从起点出发只允许向右或向下移动到达终点的路径有多少条。

思路:每次只能向右或者向下,总共 40 步,也就是 40 步中每一步都有两种选择,也就是 C (40 , 20) 。

为什么能在计算分子的时候不断约分掉分母?首先,组合数是整数,也就是说到最后分子一定能整除分母。我们使用 m 记录当前还没有被约分掉的最大的数,如果分子能够整除掉 m 就进行约分并且 m 更新为下一个等待约分的值。这样做就可以避免在计算组合数中导致的数据溢出问题!


/*************************************************************************
    > File Name: euler015.c
    > Author:    WArobot 
    > Blog:      http://www.cnblogs.com/WArobot/ 
    > Created Time: 2017年06月27日 星期二 20时05分45秒
 ************************************************************************/

#include <stdio.h>
#include <inttypes.h>

int32_t main() {
	int64_t ans = 1 , m = 20;
	for (int32_t i = 40 ; i > 20 ; i--) {		// 在计算过程中不断约分防止数据溢出
		ans *= i;		
		while (ans % m == 0 && m != 1) {	
			ans /= m;
			--m;
		}
	}
	printf("%"PRId64"\n",ans);
	return 0;
}

方法二:DP

/*************************************************************************
	> File Name: test.cpp
	> Author: 
	> Mail: 
	> Created Time: 2018年02月03日 星期六 08时42分28秒
 ************************************************************************/

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
ll dp[21][21];

int main() {
    for (int i = 0 ; i <= 20 ; ++i) {
        for (int j = 0 ; j <= 20 ; ++j) {
            if (i == 0 || j == 0) {
                dp[i][j] = 1;
            } else {
                dp[i][j] += dp[i - 1][j] + dp[i][j - 1];
            }
        }
    }
    printf("%lld\n", dp[20][20]);
    return 0;
}
posted @ 2017-06-27 20:27  ojnQ  阅读(282)  评论(0编辑  收藏  举报