HDU 4704 Sum( 费马小定理 + 快速幂 )
**链接:****传送门 **
题意:求 N 的拆分数
思路:
-
吐嘈:****求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 , 4 = 1 + 1 + 2 , 4 = 1 + 2 + 1 , 4 = 2 + 1 + 1 , 4 = 1 + 1 + 1 + 1,共 8 种,你没有看错,这跟普通概念上的拆分数有很大的不同,拆分数不考虑顺序,即 4 = 1 + 3 与 4 = 3 + 1 是相同的,及其坑爹,所以可以发现 N 的拆分数其实是 2^(n-1)
-
由于 n 的范围大的可怕,直接快速幂是G了,这时候神奇的数学就起了很大的作用!不得不说数学真是美妙!真不愧是科学的基石!根据费马小定理( p 是素数 , 且 gcd( p , a ) = 1 ,则有 a^(p-1) % p = 1 )可知,MOD = 1e9 + 7 是素数,所以我们可以降幂!可以将 2 ^ n 降解为 2 ^ ( n % (MOD - 1) ),然后快速幂跑一下就 ok 了
/*************************************************************************
> File Name: hdu4704.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月22日 星期一 16时55分59秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod(x) ((x)%MOD)
const int MAX_N = 100010;
const int MOD = 1e9+7;
ll Trans(char* s,int mod){
ll sum = 0; int len = strlen(s);
for(int i = 0 ; i < len ; i++){
sum = ( sum*10 + s[i]- '0' ) % mod;
}
return sum;
}
ll quick_pow(ll a,ll x){
ll ret = 1;
while(x){
if(x&1) ret = ret * a % MOD;
a = a * a % MOD;
x >>= 1;
}
return ret;
}
int main(){
char s[MAX_N];
while(~scanf("%s",s)){
ll n = Trans(s,MOD-1);
ll ans = quick_pow(2,n-1);
printf("%lld\n",ans);
}
return 0;
}
如要转载请注明转载出处:http://www.cnblogs.com/WArobot