hdu3486Interviewe(二分是错的)(ST算法RMQ + 判定上下界枚举)

题目大意是找最小的m使得前m段中每一段的最大值相加严格大于k,每一段长度为[n/m](n/m向下取整,多余的后半部分部分n-m*[n/m]不要)

 

先给一段我一开始的思路,和网上许多题解思路一样,但其实是有错误的。二分答案+RMQ (RMQ部分也可以用线段树)

#include <bits/stdc++.h>
using namespace std;

const int maxn = 2e5 + 5;
const int inf = 0x3f3f3f3f;
int f[maxn][30];
int n, k, m, v[maxn];
int mx, mi, tot;
inline int max( int a,int b ){
    return a>b ? a:b;
}

inline int min( int a, int b ){
    return a<b ? a:b;
}

inline void ST_make(){
    for( int i=1; i<=n; i++ )
        f[i][0] = v[i];
    for( int j=1; (1<<j)<=n; j++ )
        for( int i=1; i<=n; i++ )
            f[i][j] = max( f[i][j-1], f[i+(1<<(j-1))][j-1] );
}

inline int ST_query( int l, int r ){
    int k = log(r-l+1)/log(2);
    return max( f[l][k], f[r-(1<<k)+1][k]);
}

int main(){
    while( ~scanf("%d%d", &n, &k) ){
        if( n<0 && k<0 ) break;
        memset( f, 0, sizeof(f) );
        mx = -inf; mi = inf;
        tot = 0;
        for( int i=1; i<=n; i++ ){
            scanf("%d", &v[i]);
            tot += v[i];
            mx = max( v[i], mx );
            mi = min( v[i], mi );
        }
        if( mx>k ) {puts("1\n"); continue;}
        else if( tot<=k ) {puts("-1\n"); continue;}
        ST_make();
        mx = mx ? mx:1;
        mi = mi ? mi:1;
        int l = k/mx, r = min( n, k/mi+1 ), sum;        //判断上下界,节省时间
        while( l<r ){
            sum = 0;
            int mid = l+r>>1;            //这个地方不能直接用m = l+r>>1
            int t = n/mid;
            int tmp = 1;
            int d = t*mid;
            while( tmp<d){
                sum += ST_query( tmp, tmp+t-1 );
                tmp += t;
            }
            if( sum>k ){            //符合条件再令m = mid;
                r = mid;
                m = mid;
            }
            else l = mid+1;
        }
        printf("%d\n", m);
    }

    return 0;
}
View Code

 

思路都写好了,然鹅是错的。。。

给一份Discuss里dalao给的卡二分的数据

10 1500
1 1 1 1 1000 1000 1 1 1 1
很明显 答案是2 但是输出我记得好像是7
所以换了暴力枚举的思路,上代码
#include <bits/stdc++.h>
using namespace std;

const int maxn = 2e5 + 5;
const int inf = 0x3f3f3f3f;
int f[maxn][30];
int n, k, m, v[maxn];
int mx, mi, tot;
inline int max( int a,int b ){
    return a>b ? a:b;
}

inline int min( int a, int b ){
    return a<b ? a:b;
}

inline void ST_make(){
    for( int i=1; i<=n; i++ )
        f[i][0] = v[i];
    int t = log(n)/log(2)+1;
    for( int j=1; j<t; j++ )
        for( int i=1; i+(1<<j)-1<=n; i++ )
            f[i][j] = max( f[i][j-1], f[i+(1<<(j-1))][j-1] );
}

inline int ST_query( int l, int r ){
    int k = log(r-l+1)/log(2);
    return max( f[l][k], f[r-(1<<k)+1][k]);
}

int main(){
    while( ~scanf("%d%d", &n, &k) ){
        if( n<0 && k<0 ) break;
        mx = -inf; mi = inf;
        tot = 0;
        for( int i=1; i<=n; i++ ){
            scanf("%d", &v[i]);
            tot += v[i];
            mx = max( v[i], mx );
            mi = min( v[i], mi );
        }
        if( tot<=k ){
            printf("-1\n");
            continue ;
        }
        ST_make();
        mx = mx ? mx:1;
        mi = mi ? mi:1;
        int l = k/mx, r = (k/mi+1, n);        //判定上下界,节省时间(好像判了上界r还慢了。。)
        if(l==0) l = 1;               
        bool ok = 0;
        for( m=l; m<=r; m++ ){
            int sum = 0;
            int t = n/m;
            int d = t*m;
            for( int i=1; i<=d; i+=t )            //这个地方要等于号,可举例n = m时 若i<d为判定条件则不能进行,卡了一年
                sum += ST_query( i, i+t-1 );
            if( sum>k ){
                ok = 1;
                break;
            }
        }
        if(ok) printf("%d\n", m);
        else printf("-1\n");
    }
    return 0;
}

 

posted @ 2019-05-15 15:23  CoffeeCati  阅读(185)  评论(0编辑  收藏  举报