POJ3680 Intervals(最小费用最大流)
选择若干条线段使权值最大,并且点覆盖次数不超过k。
建图如下:vs到0建立容量为k费用为0的边;坐标终点到vt连接一条容量为k费用为0的边;对于每两个相邻坐标连接一条容量为INF费用为0的边;对于线段每两个端点连接一条容量1费用为-cost的边。
这样跑最小费用最大流。相当于找出k个线段集合,每个集合的线段都不重合。原问题就这样求解。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include<algorithm> 5 using namespace std; 6 #define INF (1<<30) 7 #define MAXN 444 8 #define MAXM 444*444*2 9 struct Edge{ 10 int u,v,cap,cost,next; 11 }edge[MAXM]; 12 int head[MAXN]; 13 int NV,NE,vs,vt; 14 15 void addEdge(int u,int v,int cap,int cost){ 16 edge[NE].u=u; edge[NE].v=v; edge[NE].cap=cap; edge[NE].cost=cost; 17 edge[NE].next=head[u]; head[u]=NE++; 18 edge[NE].u=v; edge[NE].v=u; edge[NE].cap=0; edge[NE].cost=-cost; 19 edge[NE].next=head[v]; head[v]=NE++; 20 } 21 bool vis[MAXN]; 22 int d[MAXN],pre[MAXN]; 23 bool SPFA(){ 24 for(int i=0;i<NV;++i){ 25 vis[i]=0; 26 d[i]=INF; 27 } 28 vis[vs]=1; 29 d[vs]=0; 30 queue<int> que; 31 que.push(vs); 32 while(!que.empty()){ 33 int u=que.front(); que.pop(); 34 for(int i=head[u]; i!=-1; i=edge[i].next){ 35 int v=edge[i].v; 36 if(edge[i].cap && d[v]>d[u]+edge[i].cost){ 37 d[v]=d[u]+edge[i].cost; 38 pre[v]=i; 39 if(!vis[v]){ 40 vis[v]=1; 41 que.push(v); 42 } 43 } 44 } 45 vis[u]=0; 46 } 47 return d[vt]!=INF; 48 } 49 int MCMF(){ 50 int res=0; 51 while(SPFA()){ 52 int flow=INF,cost=0; 53 for(int u=vt; u!=vs; u=edge[pre[u]].u){ 54 flow=min(flow,edge[pre[u]].cap); 55 } 56 for(int u=vt; u!=vs; u=edge[pre[u]].u){ 57 edge[pre[u]].cap-=flow; 58 edge[pre[u]^1].cap+=flow; 59 cost+=flow*edge[pre[u]].cost; 60 } 61 res+=cost; 62 } 63 return res; 64 } 65 66 int from[222],to[222],cost[222]; 67 int point[444],pn; 68 int main(){ 69 int t,n,k; 70 scanf("%d",&t); 71 while(t--){ 72 scanf("%d%d",&n,&k); 73 pn=0; 74 for(int i=0; i<n; ++i){ 75 scanf("%d%d%d",from+i,to+i,cost+i); 76 point[pn++]=from[i]; point[pn++]=to[i]; 77 } 78 sort(point,point+pn); 79 pn=unique(point,point+pn)-point; 80 81 vs=pn; vt=vs+1; NV=vt+1; NE=0; 82 memset(head,-1,sizeof(head)); 83 84 addEdge(vs,0,k,0); 85 addEdge(pn-1,vt,k,0); 86 for(int i=1; i<pn; ++i){ 87 addEdge(i-1,i,INF,0); 88 } 89 for(int i=0; i<n; ++i){ 90 int x=lower_bound(point,point+pn,from[i])-point; 91 int y=lower_bound(point,point+pn,to[i])-point; 92 addEdge(x,y,1,-cost[i]); 93 } 94 95 printf("%d\n",-MCMF()); 96 } 97 return 0; 98 }