OpenGL特殊光处理
本章内容是基础篇第七章的补充和提高。这一章主要讲述一些特殊光效果处理,如全局环境光、双面光照、光的衰减、聚光、多光源、光源位置的改变等等。读者若有兴趣,可以按照本章例程的方法作出许多变换,则会出现意想不到的效果,充分发挥你的艺术才能。
14.1、光照模型
OpenGL光照模型的概念由一下三部分组成:1)全局泛光强度、2)视点位置在景物附近还是在无穷远处、3)物体的正面和背面是否分别进行光照计算。
14.1.1 全局环境光
正如前面基础篇中所提到的一样,每个光源都能对一个场景提供环境光。此外,还有一个环境光,它不来自任何特定的光源,即称为全局环境光。下面用参数GL_LIGHT_MODEL_AMBIENT来说明全局环境光的RGBA强度:
GLfloat lmodel_ambient[]={0.2,0.2,0.2,1.0}; glLightModelfv(GLLIGHT_MODEL_AMBIENT,lmodel_ambient);
在这个例子中,lmodel_ambient所用的值为GL_LIGHT_MODEL_AMBIENT的缺省值。这些数值产生小量的白色环境光。
14.1.2 近视点与无穷远视点
视点位置能影响镜面高光的计算,也就是说,顶点的高光强度依赖于顶点法向量,从顶点到光源的方向和从顶点到视点的方向。实际上,调用光照函数并不能移动视点。但是可以对光照计算作出不同的假定,这样视点似乎移动了。对于一个无穷远视点,视点到任何顶点的方向保持固定,缺省时为无穷远视点。对于一个近视点,物体每个顶点到视点的方向是不同的,需要逐个计算,从而整体性能降低,但效果更真实。下面一句函数代码是假定为近视 点:
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER,GL_TRUE);
这个调用把视点放在视点坐标系的原点处。若要切换到无穷远视点,只需将参数GL_TRUE 改为GL_FALSE即可。
14.1.3 双面光照
光照计算通常是对所有多边形进行的,无论其是正面或反面。一般情况下,设置光照条件时总是正面多边形,因此不能对背面多边形进行正确地光照。在基础篇的第七章中的例子里,物体是一个球,只有正面多边形能看到,即球的外部可见,这种情况下不必考虑背面光照。若球被砍开,其内部的曲面是可见的,那么对内部多边形需进行光照计算,这时应该调用如下函数:
glLightModeli(LIGHT_MODEL_TWO_SIDE,GL_TRUE);
启动双面光照。实际上,这就是OpenGL给背面多边形定义一个相反的法向量(相对于正面多边形而言)。一般来说,这意味着可见正面多边形和可见反面多边形的法向量都面朝观察者,而不是向里,这样所有多边形都能进行正确的光照。关闭双面光照,只需将参数GL_TRUE改为GL_FALSE即可。
14.2、光源位置与衰减
在基础篇中已经提到过,光源有无穷远光源和近光源两种形式。无穷远光源又称作定向光源,即这种光到达物体时是平行光,例如现实生活中的太阳光。近光源又称作定位光源,光源在场景中的位置影响场景的光照效果,尤其影响光到达物体的方向。台灯是定位光源的范例。在以前所有与光照有关的例子里都采用的是定向光源,如:
GLfloat light_position[]={1.0,1.0,1.0,0.0}; glLightfv(GL_LIGHT0,GL_POSITION,light_position);
光源位置坐标采用的齐次坐标(x, y, z, w),这里的w为0,所以相应的光源是定向光,(x, y, z)描述光源的方向,这个方向也要进行模型变换。GL_POSITION的缺省值是(0.0, 0.0, 1.0, 0.0),它定义了一个方向指向Z负轴的平行光源。若w非零,光源为定位光源。(x, y, z, w)指定光源在齐次坐标系下的具体位置,这个位置经过模型变换等在视点坐标系下保存下来。
真实的光,离光源越远则光强越小。因为定向光源是无穷远光源,因此距离的变换对光强的影响几乎没有,所以定向光没有衰减,而定位光有衰减。OpenGL的光衰减是通过光源的发光量乘以衰减因子计算出来的。其中衰减因子在第十章表10-2中说明过。缺省状态下,常数衰减因子是1.0,其余两个因子都是0.0。用户也可以自己定义这些值,如:
glLightf(GL_LIGHT0,GL_CONSTANT_ATTENUATION,2.0); glLightf(GL_LIGHT0,GL_LINEAR_ATTENUATION,1.0); glLightf(GL_LIGHT0,GL_QUADRATIC_ATTENUATION,0.5);
注意:环境光、漫反射光和镜面光的强度都衰减,只有辐射光和全局环境光的强度不衰减。
14.3、聚光和多光源
14.3.1 聚光
定位光源可以定义成聚光灯形式,即将光的形状限制在一个圆锥内。OpenGL中聚光的定义有以下几步:
1)定义聚光源位置。因为聚光源也是定向光源,所以他的位置同一般定向光一样。如:
GLfloat light_position[]={1.0,1.0,1.0,1.0}; glLightfv(GL_LIGHT0,LIGHT_POSITION,light_position);
2)定义聚光截止角。参数GL_SPOT_CUTOFF给定光锥的轴与中心线的夹角,也可说成是光锥顶角的一半,如图14-1所示。缺省时,这个参数为180.0,即顶角为360度,光向所有的方向发射,因此聚光关闭。一般在聚光启动情况下,聚光截止角限制在[0.0, 90.0] 之间,如下面一行代码设置截止角为45度:
glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,45.0);
3)定义聚光方向。聚光方向决定光锥的轴,它齐次坐标定义,其缺省值为(0.0, 0.0, -1.0),即指向Z负轴。聚光方向也要进行几何变换,其结果保存在视点坐标系中。它的定义如下:
GLfloat spot_direction[]={-1.0,-1.0,0.0}; glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,spot_direction);
4)定义聚光指数。参数GL_SPOT_EXPONENT控制光的集中程度,光锥中心的光强最大,越靠边的光强越小,缺省时为0。如:
glLightf(GL_LIGHT0,GL_SPOT_EXPONENT,2.0);
此外,除了定义聚光指数控制光锥内光强的分布,还可利用上一节所讲的衰减因子的设置来实现,因为衰减因子与光强相乘得最终光强值。
14.3.2 多光源及例程
在前面已提到过场景中最多可以设置八个光源(根据OpenGL的具体实现也许会更多一些)。在多光源情况下,OpenGL需计算每个顶点从每个光源接受的光强,这样会增加计算量,降低性能,因此在实时仿真中最好尽可能地减少光源数目。在前面都已讨论过八个光源的常数:GL_LIGHT0、GL_LIGHT1、…、LIGHT7,注意:GL_LIGHT0的参数缺省值与其它光源的参数缺省值不同。下面这段代码定义了红色的聚光:
GLfloat light1_ambient[]= { 0.2, 0.2, 0.2, 1.0 }; GLfloat light1_diffuse[]= { 1.0, 0.0, 0.0, 1.0 }; GLfloat light1_specular[] = { 1.0, 0.6, 0.6, 1.0 }; GLfloat light1_position[] = { -3.0, -3.0, 3.0, 1.0 }; GLfloat spot_direction[]={ 1.0,1.0,-1.0}; glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient); glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse); glLightfv(GL_LIGHT1, GL_SPECULAR,light1_specular); glLightfv(GL_LIGHT1, GL_POSITION,light1_position); glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 30.0); glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION,spot_direction); glEnable(GL_LIGHT1); // 这段代码描述的是一个红色的立方体,用它来代表所定义的聚光光源 // // 可加到程序的函数display()中去。 // glPushMatrix(); glTranslated (-3.0, -3.0, 3.0); glDisable (GL_LIGHTING); glColor3f (1.0, 0.0, 0.0); auxWireCube (0.1); glEnable (GL_LIGHTING); glPopMatrix ();
//////////////////////////////////////////////////////////////////
将这些代码加到基础篇第十章光照的例程(light2.c)中去:
例14-1 聚光和多光源运用例程(spmulght.c)
#include "glos.h" #include <GL/gl.h> #include <GL/glu.h> #include <GL/glaux.h> void myinit(void); void CALLBACK myReshape(GLsizei w, GLsizei h); void CALLBACK display(void); /* 初始化光源、材质等 */ void myinit(void) { GLfloat mat_ambient[]= { 0.2, 0.2, 0.2, 1.0 }; GLfloat mat_diffuse[]= { 0.8, 0.8, 0.8, 1.0 }; GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_shininess[] = { 50.0 }; GLfloat light0_diffuse[]= { 0.0, 0.0, 1.0, 1.0}; GLfloat light0_position[] = { 1.0, 1.0, 1.0, 0.0 }; GLfloat light1_ambient[]= { 0.2, 0.2, 0.2, 1.0 }; GLfloat light1_diffuse[]= { 1.0, 0.0, 0.0, 1.0 }; GLfloat light1_specular[] = { 1.0, 0.6, 0.6, 1.0 }; GLfloat light1_position[] = { -3.0, -3.0, 3.0, 1.0 }; GLfloat spot_direction[]={ 1.0,1.0,-1.0}; glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient); glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse); glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT, GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_DIFFUSE, light0_diffuse); glLightfv(GL_LIGHT0, GL_POSITION,light0_position); glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient); glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse); glLightfv(GL_LIGHT1, GL_SPECULAR,light1_specular); glLightfv(GL_LIGHT1, GL_POSITION,light1_position); glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 30.0); glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION,spot_direction); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); glDepthFunc(GL_LESS); glEnable(GL_DEPTH_TEST); } void CALLBACK display(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix(); glTranslated (-3.0, -3.0, 3.0); glDisable (GL_LIGHTING); glColor3f (1.0, 0.0, 0.0); auxWireCube (0.1); glEnable (GL_LIGHTING); glPopMatrix (); auxSolidSphere(2.0); glFlush(); } void CALLBACK myReshape(GLsizei w, GLsizei h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); if (w <= h) glOrtho (-5.5, 5.5, -5.5*(GLfloat)h/(GLfloat)w, 5.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0); else glOrtho (-5.5*(GLfloat)w/(GLfloat)h, 5.5*(GLfloat)w/(GLfloat)h, -5.5, 5.5, -10.0, 10.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void main(void) { auxInitDisplayMode (AUX_SINGLE | AUX_RGBA); auxInitPosition (0, 0, 500, 500); auxInitWindow ("Spotlight and Multi_lights "); myinit(); auxReshapeFunc (myReshape); auxMainLoop(display); }
|
以上程序运行结果是在屏幕中央显示一个蓝色的环形圈,按下鼠标左键则可移动光源,其中一个黄色的小球代表光源。#include "glos.h" #include <GL/gl.h> #include <GL/glu.h> #include <GL/glaux.h> void myinit(void); void CALLBACK movelight (AUX_EVENTREC *event); void CALLBACK display(void); void CALLBACK myReshape(GLsizei w, GLsizei h); static int step = 0; void CALLBACK movelight (AUX_EVENTREC *event) { step = (step + 15) % 360; } void myinit (void) { GLfloat mat_diffuse[]={0.0,0.5,1.0,1.0}; GLfloat mat_ambient[]={0.0,0.2,1.0,1.0}; GLfloat light_diffuse[]={1.0,1.0,1.0,1.0}; GLfloat light_ambient[]={0.0,0.5,0.5,1.0}; glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE,mat_diffuse); glLightfv(GL_LIGHT0,GL_DIFFUSE,light_diffuse); glLightfv(GL_LIGHT0,GL_AMBIENT,light_ambient); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glDepthFunc(GL_LESS); glEnable(GL_DEPTH_TEST); } void CALLBACK display(void) { GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 }; glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix (); glTranslatef (0.0, 0.0, -5.0); glPushMatrix (); glRotated ((GLdouble) step, -1.0, 1.0, 1.0); glRotated (0.0, 1.0, 0.0, 0.0); glLightfv (GL_LIGHT0, GL_POSITION, position); glTranslated (0.0, 0.0, 1.5); glDisable (GL_LIGHTING); glColor3f (1.0, 1.0, 0.0); auxWireSphere (0.1); glEnable (GL_LIGHTING); glPopMatrix (); auxSolidTorus (0.275, 0.85); glPopMatrix (); glFlush (); } void CALLBACK myReshape(GLsizei w, GLsizei h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0); glMatrixMode(GL_MODELVIEW); } void main(void) { auxInitDisplayMode (AUX_SINGLE | AUX_RGBA); auxInitPosition (0, 0, 500, 500); auxInitWindow ("Moving Light"); myinit(); auxMouseFunc (AUX_LEFTBUTTON, AUX_MOUSEDOWN, movelight); auxReshapeFunc (myReshape); auxMainLoop(display); }
图14-2 光源移动 |
14.5、辐射光
在前面的章节中已经应用了辐射光,可以参见10.4.4材质改变的例程(chgmat1.c)的运行效果。这里再一次强调提出,通过给GL_EMISSION定义一个RGBA值,可以使物体看起来象发出这种 颜色的光一样,以达到某种特殊效果。实际上,现实生活中的物体除光源外都不发光,但我们可以利用这一特性来模拟灯和其他光源。代码举例如下:
GLfloat mat_emission[]={0.3,0.3,0.5,0.0}; glMaterialfv(GL_FRONT,GL_EMISSION,mat_emission);
这样,物体看起来稍微有点发光。比如绘制一个打开的台灯,就可以将一个小球的材质定义成上述形式,并且在小球内部建立一个聚光源,这样台灯的灯泡效果就出来了。