Hadoop Streaming框架学习(二)
2013-08-21 11:30 ATP_ 阅读(5064) 评论(0) 编辑 收藏 举报1.常用Streaming命令介绍
使用下面的命令运行Streaming MapReduce程序:
1: $HADOOP_HOME/bin/hadoop/hadoop streaming args
其中args是streaming参数,下面是参数列表:
-input <path> |
输入数据路径 |
-output <path> |
输出数据路径 |
-mapper <cmd|JavaClassName> |
mapper可执行程序或Java类 |
-reducer <cmd|JavaClassName> |
reducer可执行程序或Java类 |
-file <file> Optional |
分发本地文件 |
-cacheFile <file> Optional |
分发HDFS文件 |
-cacheArchive <file> Optional |
分发HDFS压缩文件 |
-numReduceTasks <num> Optional |
reduce任务个数 |
-jobconf | -D NAME=VALUE Optional |
作业配置参数 |
-combiner <JavaClassName> Optional |
Combiner Java类 |
-partitioner <JavaClassName> Optional |
Partitioner Java类 |
-inputformat <JavaClassName> Optional |
InputFormat Java类 |
-outputformat <JavaClassName> Optional |
OutputFormat Java类 |
-inputreader <spec> Optional |
InputReader配置 |
-cmdenv <n>=<v> Optional |
传给mapper和reducer的环境变量 |
-mapdebug <path> Optional |
mapper失败时运行的debug程序 |
-reducedebug <path> Optional |
reducer失败时运行的debug程序 |
-verbose Optional |
详细输出模式 |
2.命令参数详解
下面是对各个参数的详细说明:
l -input <path>:指定作业输入,path可以是文件或者目录,可以使用*通配符,-input选项可以使用多次指定多个文件或目录作为输入。
l -output <path>:指定作业输出目录,path必须不存在,而且执行作业的用户必须有创建该目录的权限,-output只能使用一次。
l -mapper:指定mapper可执行程序或Java类,必须指定且唯一。
l -reducer:指定reducer可执行程序或Java类,必须指定且唯一。
l -file, -cacheFile, -cacheArchive:分别用于向计算节点分发本地文件、HDFS文件和HDFS压缩文件,具体使用方法参考文件分发与打包。
l -numReduceTasks:指定reducer的个数,如果设置-numReduceTasks 0或者-reducer NONE则没有reducer程序,mapper的输出直接作为整个作业的输出。
l -jobconf | -D NAME=VALUE:指定作业参数,NAME是参数名,VALUE是参数值,可以指定的参数参考hadoop-default.xml。特别建议用-jobconf mapred.job.name='My Job Name'设置作业名,使用-jobconf mapred.job.priority=VERY_HIGH | HIGH | NORMAL | LOW | VERY_LOW设置作业优先级,使用-jobconf mapred.job.map.capacity=M设置同时最多运行M个map任务,使用-jobconf mapred.job.reduce.capacity=N设置同时最多运行N个reduce任务。常见的作业配置参数如下表所示:
mapred.job.name |
作业名 |
mapred.job.priority |
作业优先级 |
mapred.job.map.capacity |
最多同时运行map任务数 |
mapred.job.reduce.capacity |
最多同时运行reduce任务数 |
hadoop.job.ugi |
作业执行权限 |
mapred.map.tasks |
map任务个数 |
mapred.reduce.tasks |
reduce任务个数 |
mapred.job.groups |
作业可运行的计算节点分组 |
mapred.task.timeout |
任务没有响应(输入输出)的最大时间 |
mapred.compress.map.output |
map的输出是否压缩 |
mapred.map.output.compression.codec |
map的输出压缩方式 |
mapred.output.compress |
reduce的输出是否压缩 |
mapred.output.compression.codec |
reduce的输出压缩方式 |
stream.map.output.field.separator |
map输出分隔符 |
l -combiner:指定combiner Java类,对应的Java类文件打包成jar文件后用-file分发。
l -partitioner:指定partitioner Java类,Streaming提供了一些实用的partitioner实现,参考KeyBasedFiledPartitoner和IntHashPartitioner。
l -inputformat, -outputformat:指定inputformat和outputformat Java类,用于读取输入数据和写入输出数据,分别要实现InputFormat和OutputFormat接口。如果不指定,默认使用TextInputFormat和TextOutputFormat。
l -cmdenv NAME=VALUE:给mapper和reducer程序传递额外的环境变量,NAME是变量名,VALUE是变量值。
l -mapdebug, -reducedebug:分别指定mapper和reducer程序失败时运行的debug程序。
l -verbose:指定输出详细信息,例如分发哪些文件,实际作业配置参数值等,可以用于调试。
3.Streaming使用示例
1: # 删除原目录 由于streaming必须确保输出路径不存在
2: $hadoop fs -rmr "$outpath"
3:
4: # 执行统计
5: $hadoop streaming \
6: -input "$inpath" \ # 文件输入路径
7: -output "$outpath" \ # 结果输出路径
8: -mapper "$map" \ # map阶段所用脚步
9: -reducer "$reduce" \ # reduce阶段所用脚本
10: -file "$map" \ # 将客户端本地分拣分发到计算节点
11: -file "$reduce" \
12: -jobconf mapred.job.name="test_task" \ # 任务名称
13: -jobconf stream.num.map.output.key.fields=1 \
14: -jobconf mapred.job.priority=HIGH \ # 作业优先级
15: -jobconf mapred.job.map.capacity=100 \ # 同时运行的map数
16: -jobconf mapred.job.reduce.capacity=10 \ # 同时运行的reduce数
17: -jobconf mapred.map.tasks=2000 \ # map的个数
18: -jobconf mapred.reduce.tasks=10 # reduce的格式
19:
20: exit $?