摘要:
DenseBox检测算法的设计十分超前,如今很多Anchor-free方法有其影子,如果当时不是比Faster R-CNN晚了一点出现,可能目标检测领域很早就开始往Anchor-free的方向发展了 来源:晓飞的算法工程笔记 公众号 论文: DenseBox: Unifying Landmark L 阅读全文
摘要:
针对anchor-point检测算法的优化问题,论文提出了SAPD方法,对不同位置的anchor point使用不同的损失权重,并且对不同的特征金字塔层进行加权共同训练,去除了大部分人为制定的规则,更加遵循网络本身的权值进行训练 来源:晓飞的算法工程笔记 公众号 论文: Soft Anchor-Po 阅读全文
摘要:
FSAF深入地分析FPN层在训练时的选择问题,以超简单的anchor-free分支形式嵌入原网络,几乎对速度没有影响,可更准确的选择最优的FPN层,带来不错的精度提升 来源:晓飞的算法工程笔记 公众号 论文: Feature Selective Anchor-Free Module for Sing 阅读全文
摘要:
RepPointsV2的整体思想类似与Mask R-CNN,加入更多的任务来监督目标检测算法的学习。虽然在创新性上可能不够新颖,但论文的通用性还是很不错的,而且将角点任务的输出用于联合推理,从对比实验上看提升不少 来源:晓飞的算法工程笔记 公众号 论文: RepPoints V2: Verifica 阅读全文
摘要:
RepPoints的设计思想十分巧妙,使用富含语义信息的点集来表示目标,并且巧用可变形卷积来进行实现,整体网络设计十分完备,值得学习 来源:晓飞的算法工程笔记 公众号 论文: RepPoints: Point Set Representation for Object Detection 论文地址: 阅读全文
摘要:
论文对CornerNet进行了性能优化,提出了CornerNet-Saccade和CornerNet-Squeeze两个优化的CornerNet变种,优化的手段具有很高的针对性和局限性,不过依然有很多可以学习的地方 来源:晓飞的算法工程笔记 公众号 论文: CornerNet-Lite: Effic 阅读全文
摘要:
SaccadeNet基于中心点特征进行初步的目标定位,然后利用初步预测框的角点特征以及中心点特征进行预测框的精调,整体思想类似于two-stage目标检测算法,将第二阶段的预测框精调用的区域特征转化为点特征。SaccadeNet在精度和速度上都可圈可点,整体思想十分不错 来源:晓飞的算法工程笔记 公 阅读全文
摘要:
CSP将目标定义为中心点和尺寸,通过网络直接预测目标的中心和寸尺,相对于传统的RCNN类型检测算法轻量化了不少。整体思想与Object as Points撞车了,真是英雄所见略同 来源:晓飞的算法工程笔记 公众号 论文: Center and Scale Prediction: A Box-free 阅读全文
摘要:
CentripetalNet的核心在于新的角点匹配方式,额外学习一个向心偏移值,偏移值足够小的角点即为匹配,相对于embedding向量的匹配方式,这种方法更为鲁棒,解释性更好。另外论文提出的十字星变形卷积也很好地贴合角点目标检测的场景,增强角点特征 来源:晓飞的算法工程笔记 公众号 论文: Cen 阅读全文
摘要:
ExtremeNet检测目标的四个极点,然后以几何的方式将其组合起来进行目标检测,性能与其它传统形式的检测算法相当。ExtremeNet的检测方法十分独特,但是包含了较多的后处理方法,所以有很大的改进空间,感兴趣可以去看看论文实验中的错误分析部分 来源:晓飞的算法工程笔记 公众号 论文: Botto 阅读全文