01 2021 档案
摘要:Channel-wise卷积在channel维度上进行滑动,巧妙地解决卷积操作中输入输出的复杂全连接特性,但又不会像分组卷积那样死板,是个很不错的想法 来源:晓飞的算法工程笔记 公众号 论文: ChannelNets: Compact and Efficient Convolutional Neur
阅读全文
摘要:ESPNet系列的核心在于空洞卷积金字塔,每层具有不同的dilation rate,在参数量不增加的情况下,能够融合多尺度特征,相对于深度可分离卷积,深度可分离空洞卷积金字塔性价比更高。另外,HFF的多尺度特征融合方法也很值得借鉴 来源:晓飞的算法工程笔记 公众号 ESPNet 论文: ESPNet
阅读全文
摘要:PeleeNet是DenseNet的一个变体,没有使用流行的深度可分离卷积,PeleeNet和Pelee仅通过结构上的优化取得了很不错的性能和速度,读完论文可以学到很多网络设计的小窍门。 来源:晓飞的算法工程笔记 公众号 论文: Pelee: A Real-Time Object Detection
阅读全文
摘要:论文提出aging evolution,一个锦标赛选择的变种来优化进化算法,在NASNet搜索空间上,对比强化学习和随机搜索,该算法足够简洁,而且能够更快地搜索到更高质量的模型,论文搜索出的AmoebaNet-A在ImageNet上能达到SOTA 来源:【晓飞的算法工程笔记】 公众号 论文: Reg
阅读全文
摘要:论文基于关键点预测网络提出CenterNet算法,将检测目标视为关键点,先找到目标的中心点,然后回归其尺寸。对比上一篇同名的CenterNet算法,本文的算法更简洁且性能足够强大,不需要NMS等后处理方法,能够拓展到其它检测任务中 来源:晓飞的算法工程笔记 公众号 论文: Objects as Po
阅读全文
摘要:本文为CenterNet作者发表的,论文提出anchor-free/two-stage目标检测算法CPN,使用关键点提取候选框再使用两阶段分类器进行预测。论文整体思路很简单,但CPN的准确率和推理速度都很不错,比原本的关键点算法更快,源码也会公开,到时可以一试 来源:晓飞的算法工程笔记 公众号 论文
阅读全文
摘要:为了解决CornerNet缺乏目标内部信息的问题,提出了CenterNet使用三元组进行目标检测,包含一个中心关键点和两个角点。从实验结果来看,CenterNet相对于CornerNet只增加了少量推理时延,但带来了将近5个点的AP提升 来源:晓飞的算法工程笔记 公众号 论文: CenterNet:
阅读全文
摘要:论文提出了CornerNet,通过检测角点对的方式进行目标检测,与当前的SOTA检测模型有相当的性能。CornerNet借鉴人体姿态估计的方法,开创了目标检测领域的一个新框架,后面很多论文都基于CorerNet的研究拓展出新的角点目标检测 来源:晓飞的算法工程笔记 公众号 论文: CornerNet
阅读全文