OGF学习笔记

学习笔记:$\text{OGF}$

定义$\text{(OGF)}$:实数序列 $a_0,a_2,\cdots,a_n$ 的普通生成函数是无穷级数

$$G(x)=\sum_{i=0}^{\infty}a_ix^i$$

引入一些比较经典的生成函数:

斐波那契生成函数:

由:$a_0=0,a_1=1,a_n=a_{n-1}+a_{n-2}(n > 1)$

有:

$$F(x)=xF(x)+x^2F(x)+a_0+a_1x-a_0x$$

$$\therefore F(x)=\dfrac{x}{1-x-x^2}$$

考虑如何将其展开。

考虑等比数列的封闭形式与展开形式。

待定系数可得:

$$\dfrac{x}{1-x-x^2}=\dfrac{\dfrac{1}{\sqrt{5}}}{1-\dfrac{1+\sqrt{5}}{2}x}+\dfrac{-\dfrac{1}{\sqrt{5}}}{1-\dfrac{1-\sqrt{5}}{2}x}$$

那么我们根据等比数列的展开式,就可以得到斐波那契数列的通项公式:

$$\dfrac{x}{1-x-x^2}=\sum_{x\geq 0}x^n\dfrac{1}{\sqrt{5}}\left( \left( \dfrac{1+\sqrt{5}}{2} \right)^n - \left( \dfrac{1-\sqrt{5}}{2} \right)^n \right)$$

卡特兰数的生成函数:

卡特兰数的递推式:

$$H_n=\sum_{i=0}^{n-1}H_iH_{n-i-1}$$

其中

我们用卷积来构造关于 $H(x)$ 的方程:

$$H(x)=\sum_{n \geq 0} H_nx_n$$

$$=1+\sum_{n \geq 1} \sum_{i=0}^{n-1} H_nx^iH_{n-i-1}x^{n-i-1}x$$

$$=1+xH^2(x)$$

解得:

$$H(x)=\dfrac{1\pm \sqrt{1-4x}}{2x}$$

由于 $H_0=H_1=1$。

$$\therefore H(x)=\dfrac{1+ \sqrt{1-4x}}{2x}$$

我们运用牛顿二项式定理。

$$(1-4x)^{\frac{1}{2}}=\sum_{n \geq 0}\dbinom{\frac{1}{2}}{n}(-4x)^n$$

$$(1-4x)^{\frac{1}{2}}=1+\sum_{n \geq 1} \frac{(\frac{1}{2})^{\underline n}}{n!}(-4x)^n$$

注意到 $(\frac{1}{2})^{\underline n}=\dfrac{(-1)^{n-1}(2n-2)!}{2^{2n-1}(n-1)!}$

带回原式:

$$(1-4x)^{\frac{1}{2}}=1+\sum_{n \geq 1}\dfrac{(-1)^{n-1}(2n-2)!}{2^{2n-1}(n-1)!n!}(-4x)^n$$

$$(1-4x)^{\frac{1}{2}}=1-\sum_{n \geq 1}\dfrac{(2n-2)!}{(n-1)!n!}2x^n$$

$$(1-4x)^{\frac{1}{2}}=1-\sum_{n \geq 1}\dbinom{2n-1}{n}\dfrac{1}{2n-1} 2x^n$$

带回原式:

$$H(x)=\dfrac{1\pm \sqrt{1-4x}}{2x}$$

$$H(x)=\dfrac{1}{2x}\sum_{n \geq 1}\dbinom{2n-1}{n}\dfrac{1}{2n-1} 2x^n$$

$$H(x)=\sum_{n \geq 1}\dbinom{2n-1}{n}\dfrac{1}{2n-1} x^{n-1}$$

$$H(x)=\sum_{n \geq 0}\dbinom{2n+1}{n+1}\dfrac{1}{2n+1} x^{n}$$

$$H(x)=\sum_{n \geq 0}\dbinom{2n}{n}\dfrac{1}{n+1} x^{n}$$

这样我们就得到了卡特兰数的通项公式。

练手题:

p3978

这道题明显是卡特兰数的变式题:

设 $h_i$ 表示这 $H_i$ 个二叉树的叶子节点个数之和,有 $h_0=0,h_1=1$。

我们可以根据对称性及其定义可得:

$$\forall n \geq 2 : h_n=2\sum_{i=0}^{n-1}h_iH_{n-i-1}$$

根据生成函数乘法性质:

$$h(x)-h_0-h_1x=2h(x)H(x)x$$

根据 $\therefore H(x)=\dfrac{1+ \sqrt{1-4x}}{2x}$

有:

$$h(x)=\dfrac{x}{\sqrt{1-4x}}$$

$$h(x)=x\sum_{i=0}^{\infty} \dbinom{-\frac{1}{2}}{i}(-4x)^i$$

$$h_n=\dbinom{-\frac{1}{2}}{n-1}(-1)^{n-1}2^{2(n-1)}=\dfrac{\prod_{i=0}^{n-2}(-\frac{1}{2}-i)}{(n-1)!}(-1)^{n-1}2^{2(n-1)}$$

$$=\dfrac{(2n-3)!!}{(n-1)!}2^{n-1}=\dfrac{(2n-2)!}{((n-1)!)^2}=\dbinom{2n-2}{n-1}$$

那么题意所求的期望为:

$$\dfrac{h_n}{H_n}=\dfrac{n(n+1)}{2(2n-1)}$$

p4841

这里设 $f_n$ 为点数为 $n$ 的无向连通图,$g_n$ 为点数为 $n$ 的无向图

显然:

$$g_n=\sum_{i=1}^{n}\dbinom{n-1}{i-1}f_{i}g_{n-i}$$

仔细思考,又有: $g_n=2^{\binom{n}{2}}$。

带入式子:

$$2^{\binom{n}{2}}=\sum_{i=1}^{n}\dbinom{n-1}{i-1}f_{i}2^{\binom{n-i}{2}}$$

$$\dfrac{2^{\binom{n}{2}}}{(n-1)!}=\sum_{i=1}^{n}\dfrac{f_{i}}{(i-1)!}\dfrac{2^{\binom{n-i}{2}}}{(n-i)!}$$

然后定义:

$$f(x)=\sum_{n=1}^{\infty}\dfrac{f_{n}}{(n-1)!}x^i$$

$$g(x)=\sum_{n=0}^{\infty}\dfrac{2^{\binom{n}{2}}}{n!}x^i$$

$$h(x)=\sum_{n=1}^{\infty}\dfrac{2^{\binom{n}{2}}}{(n-1)!}x^i$$

$g(x),h(x)$ 都是已知的,对 $g$ 进行多项式求逆,再乘 $h$ 即可。

code

 

posted @ 2022-06-11 13:41  Detect-Perplexity  阅读(136)  评论(0编辑  收藏  举报