辛普森积分入门讲解

辛普森积分

引用部分

定义

辛普森积分法就是在积分区间[a,b]上去找三个点a、b和m=(a+b)/2,计算其原函数的在此处的值,然后用抛物线来拟合原函数。

正文

  • Simpson积分公式

用途:来求一个函数的积分的近似值,用于面积计算等精度要求不是特别苛刻的地方。

其实它就是用一个二次函数曲线不断拟合逼近原函数,然后求得原函数的近似值。


  • 公式说明:

前置:g(x)为一个关于x的二次函数(抛物线),其中g(x)=A×x2+B×x+C,对于求定积分0xg(x)dx,通过求积得其等于A×x33+B×x22+C×x+D 其中D为常数,可以看做0。令W(x)=0xg(x)dx,所以对于求一段定积分则有abg(x)=W(b)W(a)


在平面直角坐标系里,由(x1,y1),(x2,y2),(x3,y3)(其中x3=x1+x22)确定的抛物线f(x)在区间[x1,x2]的定积分为:

x1x2f(x)dx=16×(x2x1)×(y1+y2+4×y3)

下面给出简单的证明:

g(x)=A×x2+B×x+C 为拟合后的抛物线,则有

x1x2f(x)dxx1x2g(x)dx

=W(x2)W(x1)

=A3×(x2)3+B2×(x2)2+C×x2(A3×(x1)3+B2×(x1)2+C×x1)

=A3×((x2)3(x1)3)+B2×((x2)2(x1)2)+C×(x2x1)

=x2x16×(2×A×((x2)2+x1×x2+(x1)2)+3×B×(x2+x1)+6×C)

展开化简整理得:
=x2x16×(A×(x1)2+B×x1+C+A×(x2)2+B×x2+C+4×A×(x2+x12)2)

将其组合成完全平方式(配方)后
=x2x16×(g(x1)+g(x2)+4×g(x1+x22))

=x2x16×(g(x1)+g(x2)+4×g(x3))

于是我们就得到了simpson积分公式
abf(x)dxba6×[g(a)+4×g(a+b2)+g(b)]

在实际计算中g(x)的值可以用原函数f(x)的值来代替,于是就是如下公式:

abf(x)dxba6×[f(a)+4×f(a+b2)+f(b)]

代码:

double simpson(double l,double r){
    return (r-l)*(f(l)+4*f((l+r)/2)+f(r))/6;
}

自适应辛普森积分法

  • 那么实际程序该如何实现辛普森积分求积呢?

我们如果要求abf(x)dx的近似值的话,可以用递归二分区间求解来达到要求精度。
用如下公式:

abf(x)dx=amidf(x)dx+midbf(x)dx

其中mid=a+b2,证明:显然式证明 :)

但是因为是浮点数(小数),那么递归多少层,在什么时候返回值结束递归呢?
我们容易知道如果递归到ba<eps的话精度虽然很高,但是时间复杂度太高了,但是如果递归少了,精度又得不到保证,那该如何是好呢?

  • 自适应法

自适应法,就是让程序根据实际情况决定如何运行执行操作。自己随便下的定义而已

这里我们就要用自适应法来解决这个问题啦,让程序自己去决定递归层数,而且又保证精度。

说的很高深,其实很简单。还是比较难吧

  • 自动化控制区间分割的大小。

实际操作:二分递归,当满足精度就计算返回值,结束递归。

伪代码:

function(l,r,eps,ans):
mid=(l+r)/2;
lval=左边的值,rval=右边的值;
if (满足精度) return 答案;
eps/=2;
else return 左边递归+右边递归;

注意,这里的ans表示上一层计算的整个区间的答案,用来和当前这层来判断精度,eps在递归时每次除以2,这是为了消除精度误差叠加效应,当小误差多了就成大误差了,所以每次要缩小精度。

代码:

double asr(double l,double r,double eps,double ans){
    double mid=(l+r)/2;
    double lval=simpson(l,mid),rval=simpson(mid,r);
    if(fabs(lval+rval-ans)<=15*eps) return lval+rval+(lval+rval-ans)/15;
    return asr(l,mid,eps/2,lval)+asr(mid,r,eps/2,rval);
}
double asme(double a,double b,double eps){
    return asr(a,b,eps,simpson(a,b));
}

推荐文章


代码

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const db eps=1e-7;
db a,b,c,d,L,R;
db f(db x){return (c*x+d)/(a*x+b);}
db simpson(db l,db r){return (f(l)+f(r)+4*f((l+r)/2))*(r-l)/6;}
db asr(db l,db r,db exps,db val){
    db mid=(l+r)/2;
    db lval=simpson(l,mid),rval=simpson(mid,r);
    if(fabs(lval+rval-val)<=15*exps){return lval+rval+(lval+rval-val)/15;}
    return asr(l,mid,exps/2,lval)+asr(mid,r,exps/2,rval);
}
db asme(db l,db r,db exps){return asr(l,r,exps,simpson(l,r));}
int main(){
    scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&L,&R);
    printf("%lf\n",asme(L,R,eps));
    return 0;
}

代码


#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const db inf=30;
const db eps=1e-7,zero=1e-10;
db a;
db f(db x){return pow(x,a/x-x);}
db simpson(db l,db r){return (f(l)+f(r)+4*f((l+r)/2))*(r-l)/6;}
db asr(db l,db r,db exps,db val){
    db mid=(l+r)/2;
    db lval=simpson(l,mid),rval=simpson(mid,r);
    if(fabs(lval+rval-val)<=15*exps) return lval+rval+(lval+rval-val)/15;
    return asr(l,mid,exps/2,lval)+asr(mid,r,exps/2,rval);
}
db asme(db l,db r,db exps){return asr(l,r,exps,simpson(l,r));}
int main(){
    scanf("%lf",&a);
    if(a<0)puts("orz");
    else printf("%.5lf\n",asme(zero,inf,eps));
    return 0;
}

这个虽然求的是不定积分但是,不要被吓到了,因为当x大于30左右后,函数值趋近于0,所以可以不计。
然后当a<0时函数不收敛,所以无解。


其他题目[NOI2005]月下柠檬树

  • simpson的其他用途:

和扫描线结合求圆面积并和其他不规则图形面积等。

【2018.9.7】最近发现的好文章IN

posted @ 2018-06-12 08:13  VictoryCzt  阅读(1935)  评论(0编辑  收藏  举报