纪中20日c组模拟赛T1 2121. 简单游戏

T1 2121. 简单游戏

(File IO): input:easy.in output:easy.out

时间限制: 1000 ms  空间限制: 262144 KB  具体限制  

Goto ProblemSet

题目描述

      Charles和sunny在玩一个简单的游戏。若给出1~n的一个排列A,则将A1、A2相加,A2、A3相加……An-1、An相加,则得到一组n-1个元素的数列B;再将B1、B2相加,B2、B3相加,Bn-2、Bn-1相加,则得到一组n-2个元素的数列……如此往复,最终会得出一个数T。而Charles和sunny玩的游戏便是,Charles给出n和T,sunny在尽可能短的时间内,找到能通过上述操作得到T且字典序最小的1~n的排列。(sunny大声说:“What  an easy game!”,接着几下就给出了解),Charles觉得没意思,就想和你玩,当然,你可以用一种叫做“电子计算机”的东西帮你。

输入

       本题有多组数据,对于每组数据:一行两个整数n(0<n<=20),t即最后求出来的数。两个0表示输入结束

输出

      对于每组测试数据输出一行n个整数,用空格分开,行尾无多余空格,表示求出来的满足要求的1~n的一个排列。

样例输入

4 16
3 9
0 0 

样例输出

3 1 2 4
1 3 2


对样例解释:
开始排列:  3     1      2      4
第一次操作:3+1=4  1+2=3  2+4=6
    得到:  4      3      6
第二次得到:     7     9
最后就是:        16

数据范围限制

数据保证有解。请注意加粗字体!
对于30%的数据,保证该组里的每个N都不超过10。
对于100%的数据,保证有每个N不超过20,且每组数据的个数不超过10。

Solution

首先可以发现,对于一个长度为n的排列,经过了n-1次邻项相加后,第i项被加了C(n-1,i)次(二项式定理).

所以可以先预处理杨辉三角形。

Algorithm1

使用next_permutation方便的计算地排列

但是没有剪枝...很慢的

Code1

简单的垃圾代码

 1 #pragma GCC optimize(2)
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstdio>
 5 #include<cstring>
 6 #include<cmath>
 7 #include<map>
 8 #include<set>
 9 #include<vector>
10 #include<queue>
11 #define IL inline
12 using namespace std;
13 int tria[30][30]={
14 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
15 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
16 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
17 0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
18 0,1,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
19 0,1,4,6,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
20 0,1,5,10,10,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
21 0,1,6,15,20,15,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
22 0,1,7,21,35,35,21,7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
23 0,1,8,28,56,70,56,28,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
24 0,1,9,36,84,126,126,84,36,9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
25 0,1,10,45,120,210,252,210,120,45,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
26 0,1,11,55,165,330,462,462,330,165,55,11,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
27 0,1,12,66,220,495,792,924,792,495,220,66,12,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
28 0,1,13,78,286,715,1287,1716,1716,1287,715,286,78,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
29 0,1,14,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,14,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
30 0,1,15,105,455,1365,3003,5005,6435,6435,5005,3003,1365,455,105,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
31 0,1,16,120,560,1820,4368,8008,11440,12870,11440,8008,4368,1820,560,120,16,1,0,0,0,0,0,0,0,0,0,0,0,0,
32 0,1,17,136,680,2380,6188,12376,19448,24310,24310,19448,12376,6188,2380,680,136,17,1,0,0,0,0,0,0,0,0,0,0,0,
33 0,1,18,153,816,3060,8568,18564,31824,43758,48620,43758,31824,18564,8568,3060,816,153,18,1,0,0,0,0,0,0,0,0,0,0,
34 0,1,19,171,969,3876,11628,27132,50388,75582,92378,92378,75582,50388,27132,11628,3876,969,171,19,1,0,0,0,0,0,0,0,0,0,
35 0,1,20,190,1140,4845,15504,38760,77520,125970,167960,184756,167960,125970,77520,38760,15504,4845,1140,190,20,1,0,0,0,0,0,0,0,0,
36 0,1,21,210,1330,5985,20349,54264,116280,203490,293930,352716,352716,293930,203490,116280,54264,20349,5985,1330,210,21,1,0,0,0,0,0,0,0,
37 0,1,22,231,1540,7315,26334,74613,170544,319770,497420,646646,705432,646646,497420,319770,170544,74613,26334,7315,1540,231,22,1,0,0,0,0,0,0,
38 0,1,23,253,1771,8855,33649,100947,245157,490314,817190,1144066,1352078,1352078,1144066,817190,490314,245157,100947,33649,8855,1771,253,23,1,0,0,0,0,0,
39 0,1,24,276,2024,10626,42504,134596,346104,735471,1307504,1961256,2496144,2704156,2496144,1961256,1307504,735471,346104,134596,42504,10626,2024,276,24,1,0,0,0,0,
40 0,1,25,300,2300,12650,53130,177100,480700,1081575,2042975,3268760,4457400,5200300,5200300,4457400,3268760,2042975,1081575,480700,177100,53130,12650,2300,300,25,1,0,0,0,
41 0,1,26,325,2600,14950,65780,230230,657800,1562275,3124550,5311735,7726160,9657700,10400600,9657700,7726160,5311735,3124550,1562275,657800,230230,65780,14950,2600,325,26,1,0,0,
42 0,1,27,351,2925,17550,80730,296010,888030,2220075,4686825,8436285,13037895,17383860,20058300,20058300,17383860,13037895,8436285,4686825,2220075,888030,296010,80730,17550,2925,351,27,1,0,
43 0,1,28,378,3276,20475,98280,376740,1184040,3108105,6906900,13123110,21474180,30421755,37442160,40116600,37442160,30421755,21474180,13123110,6906900,3108105,1184040,376740,98280,20475,3276,378,28,1
44 };
45 //triangle
46 int ans;
47 int arr[50],t,n;
48 IL int read()
49 {
50     char ch;int x=0;
51     ch=getchar();
52     while(ch<'0'||ch>'9') ch=getchar();
53     while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
54     return x; 
55 }
56 int main()
57 {
58     freopen("easy.in","r",stdin);
59     freopen("easy.out","w",stdout);
60     n=read();
61     t=read();
62     do{
63         for(int i=1;i<=n;i++) 
64             arr[i]=i;
65         do{
66             ans=0;
67             int i;
68             for(i=1;i<=n&&ans<=t;i++)
69                 ans+=arr[i]*tria[n][i];
70             if(ans==t&&i>n){
71                 for(int j=1;j<=n;j++){
72                     printf("%d",arr[j]);
73                     if(j<n) printf(" "); 
74                 }
75                 cout<<endl;
76                 break;
77             }
78         }while(next_permutation(arr+1,arr+n+1));
79         n=read();
80         t=read();
81     }while(n!=0||t!=0);
82      return 0;
83 }
Code1

Algorithm2

使用dfs,对每一位进行判断,同时标记use(是否使用过此数)

这比next_permutation好在可以尽情剪枝——只要你能想到

Code2

这是剪枝1:如果当前的和(前depth个数的和)已经超过了t,就跳出。

也可以把

if(sum>t) return;

放到for循环里(这不是废话吗)

可以减少一点分支

按照题解上的说法,这样子只有40分(果然……)

 1 #pragma GCC optimize(2)
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstdio>
 5 #include<cstring>
 6 #include<cmath>
 7 #include<map>
 8 #include<set>
 9 #include<vector>
10 #include<queue>
11 #define IL inline
12 using namespace std;
13 int tria[21][30]={
14 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
15 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
16 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
17 0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
18 0,1,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
19 0,1,4,6,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
20 0,1,5,10,10,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
21 0,1,6,15,20,15,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
22 0,1,7,21,35,35,21,7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
23 0,1,8,28,56,70,56,28,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
24 0,1,9,36,84,126,126,84,36,9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
25 0,1,10,45,120,210,252,210,120,45,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
26 0,1,11,55,165,330,462,462,330,165,55,11,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
27 0,1,12,66,220,495,792,924,792,495,220,66,12,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
28 0,1,13,78,286,715,1287,1716,1716,1287,715,286,78,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
29 0,1,14,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,14,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
30 0,1,15,105,455,1365,3003,5005,6435,6435,5005,3003,1365,455,105,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
31 0,1,16,120,560,1820,4368,8008,11440,12870,11440,8008,4368,1820,560,120,16,1,0,0,0,0,0,0,0,0,0,0,0,0,
32 0,1,17,136,680,2380,6188,12376,19448,24310,24310,19448,12376,6188,2380,680,136,17,1,0,0,0,0,0,0,0,0,0,0,0,
33 0,1,18,153,816,3060,8568,18564,31824,43758,48620,43758,31824,18564,8568,3060,816,153,18,1,0,0,0,0,0,0,0,0,0,0,
34 0,1,19,171,969,3876,11628,27132,50388,75582,92378,92378,75582,50388,27132,11628,3876,969,171,19,1,0,0,0,0,0,0,0,0,0,
35 };
36 int use[21];
37 int ans;
38 int arr[50],t,n;
39 IL int read()
40 {
41     char ch;int x=0;
42     ch=getchar();
43     while(ch<'0'||ch>'9') ch=getchar();
44     while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
45     return x; 
46 }
47 bool succ=0;
48 IL void dfs(int depth,int sum)
49 {
50     if(sum>t) return;
51     if(succ) return;
52     if(depth==n){
53         if(sum==t)
54         {
55             succ=1;
56             for(int j=1;j<=n;j++){
57                 printf("%d",arr[j]);
58                 if(j<n) printf(" "); 
59             }
60             printf("\n");
61         }
62         return;
63     }
64     for(int i=1;i<=n;i++)
65     {
66         if(!use[i])
67         {
68             use[i]=1;
69             arr[depth+1]=i;
70             dfs(depth+1,sum+i*tria[n][depth+1]);
71             arr[depth+1]=0;
72             use[i]=0;
73         }
74     }
75 }
76 int main()
77 {
78 //    freopen("easy.in","r",stdin);
79 //    freopen("easy.out","w",stdout);
80     n=read();
81     t=read();
82     do{
83         succ=0;
84         dfs(0,0);
85         n=read();
86         t=read();
87     }while(n!=0||t!=0);
88      return 0;
89 }

Algorithm3

这是剪枝2:

由于杨辉三角形有对称性

比如,枚举到 2 4 1 3 时,其sum(邻项合并后的结果)会与 2 1 4 3 相同

那么可以加入以下判断:

if(depth>(n/2) && i<arr[n-depth]) continue;

代码翻译

如果当前要枚举的数即将放的位置超过了总长度的一半,且即将枚举的数值i小于与它关于这个二项式对称的那一项,那就说明这两项如果调换,总值不会发生变化,那么就不考虑这种情况。

这句话真长……

Code3

 1 #pragma GCC optimize(2)
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstdio>
 5 #include<cstring>
 6 #include<cmath>
 7 #include<map>
 8 #include<set>
 9 #include<vector>
10 #include<queue>
11 #define IL inline
12 using namespace std;
13 int tria[21][30]={
14 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
15 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
16 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
17 0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
18 0,1,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
19 0,1,4,6,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
20 0,1,5,10,10,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
21 0,1,6,15,20,15,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
22 0,1,7,21,35,35,21,7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
23 0,1,8,28,56,70,56,28,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
24 0,1,9,36,84,126,126,84,36,9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
25 0,1,10,45,120,210,252,210,120,45,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
26 0,1,11,55,165,330,462,462,330,165,55,11,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
27 0,1,12,66,220,495,792,924,792,495,220,66,12,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
28 0,1,13,78,286,715,1287,1716,1716,1287,715,286,78,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
29 0,1,14,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,14,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
30 0,1,15,105,455,1365,3003,5005,6435,6435,5005,3003,1365,455,105,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
31 0,1,16,120,560,1820,4368,8008,11440,12870,11440,8008,4368,1820,560,120,16,1,0,0,0,0,0,0,0,0,0,0,0,0,
32 0,1,17,136,680,2380,6188,12376,19448,24310,24310,19448,12376,6188,2380,680,136,17,1,0,0,0,0,0,0,0,0,0,0,0,
33 0,1,18,153,816,3060,8568,18564,31824,43758,48620,43758,31824,18564,8568,3060,816,153,18,1,0,0,0,0,0,0,0,0,0,0,
34 0,1,19,171,969,3876,11628,27132,50388,75582,92378,92378,75582,50388,27132,11628,3876,969,171,19,1,0,0,0,0,0,0,0,0,0,
35 };
36 int use[21];
37 int arr[50],t,n;
38 IL int read()
39 {
40     char ch;int x=0;
41     ch=getchar();
42     while(ch<'0'||ch>'9') ch=getchar();
43     while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
44     return x; 
45 }
46 bool succ=0;
47 IL void dfs(int depth,int sum)
48 {
49     if(succ) return;
50     if(depth==n){
51         if(sum==t)
52         {
53             succ=1;
54             for(int j=1;j<=n;j++){
55                 printf("%d",arr[j]);
56                 if(j<n) printf(" "); 
57             }
58             printf("\n");
59         }
60         return;
61     }
62     for(int i=1;i<=n;i++)
63     {
64         if(!use[i])
65         {
66             if(depth>(n/2) && i<arr[n-depth]) continue;
67             if(sum+i*tria[n][depth+1]>t) continue;
68             use[i]=1;
69             arr[depth+1]=i;
70             dfs(depth+1,sum+i*tria[n][depth+1]);
71             arr[depth+1]=0;
72             use[i]=0;
73         }
74     }
75 }
76 int main()
77 {
78 //    freopen("easy.in","r",stdin);
79 //    freopen("easy.out","w",stdout);
80     n=read();
81     t=read();
82     do{
83         succ=0;
84         dfs(0,0);
85         n=read();
86         t=read();
87     }while(n!=0||t!=0);
88      return 0;
89 }
Code3

好的,果然如题解所说,这个剪枝并不能加分。

Algorithm4

这是剪枝3:枚举前,就当前还未使用的数字来讲,可以将它们重新排序,对应还没使用的系数,可以算出已选择的数字不变的情况下,让之后几个数排列组合,再乘以对应系数的和的最大值与最小值。

貌似我讲的不太清楚。

当枚举到第X个数时,剩余的N-X个数,与剩余的N-X个系数一一对应,让大数和大系数相乘,小数和小系数相乘可以得到最大值,让大数和小系数相乘,小数和大系数相乘可以得到最小值,如果剩余的值不在这个范围内,就不要搜下去,这样可以大大优化。

举个栗子

若N=4,T=16:

当枚举arr[1]=1时,剩余16-1*1=15,剩余的未放置的数为2,3,4,剩余的系数为1,3,3,这样最大值为4*3+3*3+2*1=23,最小值为4*1+3*3+2*3=19,都超过了15,所以第一个数不能选1。

Code4

  1 #pragma GCC optimize(2)
  2 #include<iostream>
  3 #include<algorithm>
  4 #include<cstdio>
  5 #include<cstring>
  6 #include<cmath>
  7 #include<map>
  8 #include<set>
  9 #include<vector>
 10 #include<queue>
 11 #define IL inline
 12 using namespace std;
 13 int tria[21][30]={
 14 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 15 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 16 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 17 0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 18 0,1,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 19 0,1,4,6,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 20 0,1,5,10,10,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 21 0,1,6,15,20,15,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 22 0,1,7,21,35,35,21,7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 23 0,1,8,28,56,70,56,28,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 24 0,1,9,36,84,126,126,84,36,9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 25 0,1,10,45,120,210,252,210,120,45,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 26 0,1,11,55,165,330,462,462,330,165,55,11,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 27 0,1,12,66,220,495,792,924,792,495,220,66,12,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 28 0,1,13,78,286,715,1287,1716,1716,1287,715,286,78,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 29 0,1,14,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,14,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 30 0,1,15,105,455,1365,3003,5005,6435,6435,5005,3003,1365,455,105,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
 31 0,1,16,120,560,1820,4368,8008,11440,12870,11440,8008,4368,1820,560,120,16,1,0,0,0,0,0,0,0,0,0,0,0,0,
 32 0,1,17,136,680,2380,6188,12376,19448,24310,24310,19448,12376,6188,2380,680,136,17,1,0,0,0,0,0,0,0,0,0,0,0,
 33 0,1,18,153,816,3060,8568,18564,31824,43758,48620,43758,31824,18564,8568,3060,816,153,18,1,0,0,0,0,0,0,0,0,0,0,
 34 0,1,19,171,969,3876,11628,27132,50388,75582,92378,92378,75582,50388,27132,11628,3876,969,171,19,1,0,0,0,0,0,0,0,0,0,
 35 };
 36 int use[21];
 37 int tarr[50],ttria[30];
 38 int arr[50],t,n;
 39 IL int read()
 40 {
 41     char ch;int x=0;
 42     ch=getchar();
 43     while(ch<'0'||ch>'9') ch=getchar();
 44     while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
 45     return x; 
 46 }
 47 bool succ=0;
 48 IL void dfs(int depth,int sum)
 49 {
 50     if(succ) return;
 51     if(depth==n){
 52         if(sum==t)
 53         {
 54             succ=1;
 55             for(int j=1;j<=n;j++){
 56                 printf("%d",arr[j]);
 57                 if(j<n) printf(" "); 
 58             }
 59             printf("\n");
 60         }
 61         return;
 62     }
 63 
 64     int s=0;
 65     for(int i=1;i<=n;i++)
 66     {
 67         if(use[i]) continue;
 68         tarr[++s]=i;
 69     }
 70     for(int i=depth+1;i<=n;i++)
 71         ttria[i-depth]=tria[n][i];
 72     sort(tarr+1,tarr+s+1);
 73     sort(ttria+1,ttria+s+1);
 74     int maxs=0,mins=0;
 75     for(int i=1;i<=s;i++)
 76     {
 77         maxs+=tarr[i]*ttria[i];
 78         mins+=tarr[i]*ttria[s-i+1];
 79     }
 80     if(t<mins+sum||t>maxs+sum) return;
 81 
 82     for(int i=1;i<=n;i++)
 83     {
 84         if(!use[i])
 85         {
 86             if(depth>(n/2) && i<arr[n-depth]) continue;
 87             if(sum+i*tria[n][depth+1]>t) continue;
 88             use[i]=1;
 89             arr[depth+1]=i;
 90             dfs(depth+1,sum+i*tria[n][depth+1]);
 91             arr[depth+1]=0;
 92             use[i]=0;
 93         }
 94     }
 95 }
 96 int main()
 97 {
 98 //    freopen("easy.in","r",stdin);
 99 //    freopen("easy.out","w",stdout);
100     n=read();
101     t=read();
102     do{
103         succ=0;
104         dfs(0,0);
105         n=read();
106         t=read();
107     }while(n!=0||t!=0);
108      return 0;
109 }

Impression

好辛苦呀~~~

posted @ 2019-08-20 18:49  Vanilla_chan  阅读(356)  评论(0编辑  收藏  举报