OpenMesh 之向量操作

OpenMesh 提供了许多可供使用的向量操作函数,使用特别方便。

 

计算距离:

从官方文档可以看到OpenMesh提供了5个函数,分别为

Scalar length() const        //compute euclidean norm 

Scalar norm() const         //compute euclidean norm 

Scalar sqrnorm() const    //compute squared euclidean norm 

Scalar l1_norm() const    //compute L1 (Manhattan) norm 

Scalar l8_norm() const   //compute l8_norm 

test:

    MyMesh::Normal p(1,-1,2), q(0,1,3);
    cout<<"length  :  "<<(p-q).length()<<endl;
    cout<<"norm    :  "<<(p-q).norm()<<endl;
    cout<<"sqrnorm :  "<<(p-q).sqrnorm()<<endl;
    cout<<"l1_norm :  "<<(p-q).l1_norm()<<endl;
    cout<<"l8_norm :  "<<(p-q).l8_norm()<<endl;

result:

 

对于二维空间上的点(也可看做向量,起点为原点) p(x1,y1), q(x2,y2)

欧几里得距离                norm =( (x2-x1)+ (y2-y1)2

曼哈顿距离(L1距离)      l1_norm = |x2-x1| + |y2-y1|

切比雪夫距离(L距离)    l8_norm = max{|x2-x1| , |y2-y1|}

 

max & min

test:

 1     MyMesh::Normal p(1,-3,2), q(0,2,4);
 2     cout<<"max       :  "<<p.max()<<endl;
 3     cout<<"max_abs   :  "<<p.max_abs()<<endl;
 4 
 5     cout<<"maximize  :  "<<p.maximize(q)<<endl;
 6     cout<<p<<endl<<q<<endl;
 7     cout<<"maximized :  "<<p.maximized(q)<<endl;
 8     cout<<p<<endl<<q<<endl;
 9     cout<<"maximized :  "<<q.maximized(p)<<endl;
10     cout<<p<<endl<<q<<endl;

result:

从result来看,max 和 max_abs 很简单,不用多说。对于 p.maximize(q) 返回值是向量p与q对应位置的最大值组成的向量,而 p.maximized(q) 判断向量p是否经历了maximize,返回值为0则向量p不变,未经过maximize, 返回值为1则向量p改变,即经过maximize。

对于min,有同样的操作,不再赘述。

 

向量单位化

OpenMesh提供了三个单位化的函数

vector type & normalize()                    //normalize vector, return normalized vector

const vector type normalized()             //return normalized vector

vector type & normalize_cond()            //normalize vector, return normalized vector and avoids div by zero

外加单位化的定义(长度为1),有四种单位化方法。

test:

 1     MyMesh::Normal p1(1,-3,2), p2(1,-3,2), p3(1,-3,2), p4(1,-3,2);
 2 
 3     MyMesh::Normal q1 = p1.normalize();
 4     cout<<"p1 : "<<p1.length()<<"    "<<p1<<endl;
 5     cout<<"q1 : "<<q1.length()<<"    "<<q1<<endl<<endl;
 6 
 7     MyMesh::Normal q2 = p2.normalized();
 8     cout<<"p2 : "<<p2.length()<<"    "<<p2<<endl;
 9     cout<<"q2 : "<<q2.length()<<"    "<<q2<<endl<<endl;
10 
11     MyMesh::Normal q3 = p3/(p3.length());
12     cout<<"p3 : "<<p3.length()<<"    "<<p3<<endl;
13     cout<<"q3 : "<<q3.length()<<"    "<<q3<<endl<<endl;
14 
15     MyMesh::Normal q4 = p4.normalize_cond();
16     cout<<"p4 : "<<p4.length()<<"    "<<p4<<endl;
17     cout<<"q4 : "<<q4.length()<<"    "<<q4<<endl<<endl<<endl;

result:

从结果看出,1和4效果一样,1和2效果不同,需要注意!!!

 

点乘叉乘(内积外积)

 

test:


1
MyMesh::Normal p(1,-3,2), q(0,2,4); 2 cout<<"dot product : "<< (p | q) <<endl; 3 cout<<"cross product : "<< (p % q) <<endl;

result:

向量 p(x1,y1,z1), q(x2,y2,z2)

点乘(内积):x1*x2 + y1*y2 + z1*z2

叉乘(外积):(y1*z2-y2*z1, x2*z1-x1*z2, x1*y2-x2*y1)   (来自行列式表示的化简,cnblog不能打公式么???)

 

posted @ 2015-04-08 13:36  VVingerfly  阅读(2395)  评论(0编辑  收藏  举报