VIrtuoso

两把多兰剑加个布甲鞋

导航

Codeforces Round #530 (Div. 2) F 线段树 + 树形dp(自下往上)

https://codeforces.com/contest/1099/problem/F

题意

一颗n个节点的树上,每个点都有\(x[i]\)个饼干,然后在i节点上吃一个饼干的时间是\(t[i]\),有n-1条边,每条边有边权w为经过一条边所需时间,你从树根开始先手向下走,然后对手割掉你所在节点到子节点的任意一条边,你可以在任何时间选择返回,在返回的过程中你可以选择性吃掉经过节点的饼干,问在双方最优的情况下,你最多能在T时间之内吃掉多少饼干并返回根节点(在足够时间返回根节点的情况下吃掉尽可能多的饼干)

题解

  • 对于选择哪个子节点对于双方最优,只有到最后一层节点(叶子)才知道,所以需要从下往上解决问题
  • 定义dp[u]为经过节点u并能返回根最多能吃多少饼干,
    • u为根,\(dp[u]=max(dp[v])\)
    • u不为根,\(dp[u]=max2(dp[v])\),选择第二大,因为最大被对手割掉
    • u为叶子,dp[u]为剩下时间lt,所能吃掉的最多的饼干数量
    • dp[1]为答案
  • 权值线段树(时间为x轴)维护路径上能吃的饼干数量num以及所需时间sum,因为到叶子的时候整条路径的饼干情况都标记在线段树上,而一定是从时间小(贪心)的开始吃,所以可以很方便找到sum<=lt最大的num,线段树起了一个类似标记数组的作用

代码

#include<bits/stdc++.h>
#define MAXN 1000005
#define m 1000000
#define ll long long 
#define mk make_pair
#define ft first
#define se second
#define pii pair<int,int>
using namespace std;
vector<pii>G[MAXN];
ll sum[MAXN<<2],num[MAXN<<2],T;
int dp[MAXN],t[MAXN],x[MAXN];
int n,u,w;
void ud(int o,int l,int r,int p,int v){
	sum[o]+=1ll*p*v;num[o]+=v;
	if(l==r)return ;
	int mid=(l+r)/2;
	if(p<=mid)ud(o<<1,l,mid,p,v);
	else ud(o<<1|1,mid+1,r,p,v);
}

ll qy(int o,int l,int r,ll lt){
	if(sum[o]<=lt)return num[o];
	if(l==r)return lt/l;
	int mid=(l+r)/2;
	if(lt>=sum[o<<1])return num[o<<1]+qy(o<<1|1,mid+1,r,lt-sum[o<<1]);
	return qy(o<<1,l,mid,lt);
}
void dfs(int u,ll lt){
	if(lt<=0)return;
	ud(1,1,m,t[u],x[u]);
	dp[u]=qy(1,1,m,lt);
	int mx1=0,mx2=0;
	for(auto tp:G[u]){
		int v=tp.ft,w=tp.se;
		dfs(v,lt-2*w);
		if(dp[v]>mx1){mx2=mx1;mx1=dp[v];}
		else if(dp[v]>mx2){mx2=dp[v];}
	}
    if(u==1)dp[u]=max(dp[u],mx1);
    else dp[u]=max(dp[u],mx2);
    ud(1,1,m,t[u],-x[u]);
}	
int main(){
	cin>>n>>T;
	for(int i=1;i<=n;i++)scanf("%d",&x[i]);
	for(int i=1;i<=n;i++)scanf("%d",&t[i]);
	for(int i=2;i<=n;i++){
		scanf("%d%d",&u,&w);
		G[u].push_back(mk(i,w));
	}
	dfs(1,T);
	cout<<dp[1];
}

posted on 2019-05-03 18:36  VIrtuoso  阅读(144)  评论(0编辑  收藏  举报