[ARC106F] Figures 题解
1.[ARC126C] Maximize GCD 题解2.[ARC126D] Pure Straight 题解3.[ABC215D] Coprime 2 题解4.CF793F Julia the snail 题解5.CF1845D Rating System 题解6.[JOI 2023 Final] Advertisement 2 题解7.CF1513D GCD and MST 题解8.「JOISC 2016 Day 2」雇佣计划 题解9.[ABC134F] Permutation Oddness 题解10.CF1188D Make Equal 题解11.[ARC096E] Everything on It 题解12.[ARC117D] Miracle Tree 题解13.[JOISC 2014 Day3] 电压 题解14.CF803C Maximal GCD 题解15.CF1787E The Harmonization of XOR 题解16.CF1762D GCD Queries 题解17.[AGC061C] First Come First Serve 题解18.CF1575G GCD Festival 题解19.CF1656D K-good 题解20.CF1823F Random Walk 题解21.[ABC297G] Constrained Nim 2 题解22.CF1762E Tree Sum 题解23.CF1798E Multitest Generator 题解24.P7486 「Stoi2031」彩虹 题解25.CF1485C Floor and Mod 题解26.CF1681E Labyrinth Adventures 题解27.CF1023F Mobile Phone Network 题解28.CF258D Little Elephant and Broken Sorting 题解29.P7485 「Stoi2031」枫 题解30.[AGC030D] Inversion Sum 题解31.CF1815D XOR Counting 题解32.CF1864B Swap and Reverse 题解33.CF1864C Divisor Chain 题解34.CF1174E Ehab and the Expected GCD Problem 题解35.[AGC051B] Bowling 题解36.CF1626F A Random Code Problem 题解37.CF915G Coprime Arrays 题解38.[ABC318E] Sandwiches 题解39.[ABC318G] Typical Path Problem 题解40.CF838D Airplane Arrangements 题解41.[ABC319G] Counting Shortest Paths 题解42.[ABC313F] Flip Machines 题解43.[ABC320F] Fuel Round Trip 题解44.[ARC125B] Squares 题解45.[ARC124C] LCM of GCDs 题解46.[ARC135C] XOR to All 题解47.CF1874C Jellyfish and EVA 题解48.[ARC136C] Circular Addition 题解49.[ARC150D] Removing Gacha 题解50.高橋君 题解51.CF1842G Tenzing and Random Operations 题解52.[ARC167D] Good Permutation 题解53.[AGC061A] Long Shuffle 题解54.[ARC104B] DNA Sequence 题解55.[ARC104C] Fair Elevator 题解56.[ARC104D] Multiset Mean 题解57.[ARC104E] Random LIS 题解58.[ABC327G] Many Good Tuple Problems 题解59.[ARC105C] Camels and Bridge 题解60.[ARC105D] Let's Play Nim 题解61.[ARC105E] Keep Graph Disconnected 题解62.[ARC105F] Lights Out on Connected Graph 题解63.[ARC106E] Medals 题解64.[ARC107F] Sum of Abs 题解
65.[ARC106F] Figures 题解
题意
给定
先可以在两个不同的节点的洞之间连边,一个洞最多连一条边,求使得最终形成的图是一棵树的方案数,对
洞之间相互区分,两个方案不同当且仅当存在一条边在两个方案中的连的洞不同。
题解
首先设
考虑组成一棵树的过程,可以从每个节点的父边入手,考虑对于每个节点,钦定一个特殊洞,使得其连向父亲节点。
那么我们每次操作可以转化为选择一个特殊洞,再选择一个非特殊洞,使得其相连。
可以发现每次操作后联通块数量一定会减少,在仅剩
考虑如何计算方案数。首先钦定特殊洞的方案数显然为
因此可以得出总方案数:
即
发现每个节点被选择的顺序是不影响最终的方案的,但是被计算了多次,考虑除去这个影响。
因此最终答案为:
可以发现,若
Code
#include <bits/stdc++.h>
typedef long long valueType;
typedef std::vector<valueType> ValueVector;
namespace MODINT {
constexpr valueType MOD = 998244353;
template<typename T1, typename T2, typename T3 = valueType>
void Inc(T1 &a, T2 b, const T3 &mod = MOD) {
a = a + b;
if (a >= mod)
a -= mod;
}
template<typename T1, typename T2, typename T3 = valueType>
void Dec(T1 &a, T2 b, const T3 &mod = MOD) {
a = a - b;
if (a < 0)
a += mod;
}
template<typename T1, typename T2, typename T3 = valueType>
T1 sum(T1 a, T2 b, const T3 &mod = MOD) {
return a + b >= mod ? a + b - mod : a + b;
}
template<typename T1, typename T2, typename T3 = valueType>
T1 sub(T1 a, T2 b, const T3 &mod = MOD) {
return a - b < 0 ? a - b + mod : a - b;
}
template<typename T1, typename T2, typename T3 = valueType>
T1 mul(T1 a, T2 b, const T3 &mod = MOD) {
return (long long) a * b % mod;
}
template<typename T1, typename T2, typename T3 = valueType>
void Mul(T1 &a, T2 b, const T3 &mod = MOD) {
a = (long long) a * b % mod;
}
template<typename T1, typename T2, typename T3 = valueType>
T1 pow(T1 a, T2 b, const T3 &mod = MOD) {
T1 result = 1;
while (b > 0) {
if (b & 1)
Mul(result, a, mod);
Mul(a, a, mod);
b = b >> 1;
}
return result;
}
constexpr valueType Inv2 = (MOD + 1) / 2;
}// namespace MODINT
using namespace MODINT;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
valueType N;
std::cin >> N;
valueType ans = 1, S = 0;
ValueVector D(N);
for (auto &iter : D) {
std::cin >> iter;
Mul(ans, iter);
Inc(S, iter);
}
for (valueType i = 0; i <= N - 3; ++i)
Mul(ans, sub(S, N + i));
std::cout << ans << std::endl;
return 0;
}
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· C# 13 中的新增功能实操
· Supergateway:MCP服务器的远程调试与集成工具
· Vue3封装支持Base64导出的电子签名组件
· 万字长文详解Text-to-SQL
· Ollama本地部署大模型总结