C#处理医学影像(四):基于Stitcher算法拼接人体全景脊柱骨骼影像

在拍摄脊柱或胸片时,经常会遇到因设备高度不够需要分段拍摄的情况,

对于影像科诊断查阅影像时希望将分段影像合并成一张影像,有助于更直观的观察病灶,

以下图为例的两个分段影像:

     

我们使用OpenCVSharp中的Stitcher类的Stitch方法,导入两张图像并拼接:

 但结果却失败了,返回错误结果:ERR_NEED_MORE_IMGS,是由于医学影像的特征点匹配不够,导致无法确定对接点。

一幅图中总存在着一些独特的像素点,这些点我们可以认为就是这幅图的特征,即为特征点

获取一幅图中存在的一些独特的像素点,需要解决两个问题:

  • 解决尺度不变性问题,不同大小的图片获取到的特征是一样的
  • 提取到的特征点要稳定,能被精确定位 


 

可参考本系列文章:C#处理医学影像(三):基于漫水边界自动选取病灶范围的实现思路

 

根据算法原理得到如下结果:

 

Sobel算子:

根据算法原理得到如下结果:

 

其中直观区别是canny算子计算的结果清晰,但不连续,容易受噪点影响,而sobel算子线条相对柔和,连续性强。

 

⑤背景降噪

进行一次手动背景降噪,使得展现的无用边缘更少,结果更清晰:

 

经过上述的一系列处理步骤后我们再次合并拼接:

            Mat srcImg1 = imgList1[0];
                    Mat srcImg2 = imgList1[1];
                  

                    Mat[] images = new Mat[] { srcImg1, srcImg2};

                    Stitcher stitcher = Stitcher.Create(Stitcher.Mode.Panorama);
                    Mat pano = new Mat();
                    var status = stitcher.Stitch(images, pano);
                    if (status != Stitcher.Status.OK)
                    {
                        ShowMsg.Box("拼接异常(" + status.ToString() + "),请重试。", BoxType.Msg, 120, this);
                        return;
                    }

得到了正确的结果:

 

 

posted @ 2023-05-05 12:05  乔克灬叔叔  阅读(4571)  评论(25编辑  收藏  举报