Counting Bits

Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

Example:
For num = 5 you should return [0,1,1,2,1,2].

Follow up:

  • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
  • Space complexity should be O(n).
  • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

 

Hint:

  1. You should make use of what you have produced already.
  2. Divide the numbers in ranges like [2-3], [4-7], [8-15] and so on. And try to generate new range from previous.
  3. Or does the odd/even status of the number help you in calculating the number of 1s?

这道题是统计二进制数字num以内每个数中‘1’的个数,题目难度为Medium。

我们先拿num=3为例,结果为[0, 1, 1, 2],得到3以内数字的结果之后,4~7的结果可以在此基础上确定,如下0~3二进制表示为:

 bin                ret

000                0

001                1

010                1

011                2

4~7二进制表示为:

  bin                ret

100                1

101                2

110                2

111                3

从上面分析可以看出,4~7除了最高位其他位和0~3是相同的,而最高位是1,这样4~7的结果就可以在0~3的基础上分别加1获得,题目就很容易解决了,具体代码:

[cpp] view plain copy
 
 在CODE上查看代码片派生到我的代码片
  1. class Solution {  
  2. public:  
  3.     vector<int> countBits(int num) {  
  4.         vector<int> ret(1, 0);  
  5.         int cnt = 0;  
  6.         while(cnt < num) {  
  7.             int sz = ret.size();  
  8.             for(int i=0; i<sz&&cnt<num; ++i,++cnt) {  
  9.                 ret.push_back(ret[i]+1);  
  10.             }  
  11.         }  
  12.         return ret;  
  13.     }  
  14. };  

 

上面从高位入手找出解决办法,还可以从低位入手。‘1’的个数等于除了最低位之外的‘1’的个数加上最低位‘1’的个数,即ret[n] = ret[n>>1] + n%2,具体代码:

[cpp] view plain copy
 
 在CODE上查看代码片派生到我的代码片
  1. class Solution {  
  2. public:  
  3.     vector<int> countBits(int num) {  
  4.         vector<int> ret(num+1, 0);  
  5.         for(int i=1; i<=num; ++i)  
  6.             ret[i] = ret[i>>1] + i%2;  
  7.         return ret;  
  8.     }  
  9. };  


 

posted @ 2016-03-19 00:01  godjob  Views(231)  Comments(0Edit  收藏  举报