HashMap实现原理,源码分析
一、源码分析
全文可参考知乎上美团官方写的:https://zhuanlan.zhihu.com/p/21673805
定义数组的初始容量。
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
定义数组最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
定义负载因子默认值
static final float DEFAULT_LOAD_FACTOR = 0.75f;
定义阈值默认值
static final int TREEIFY_THRESHOLD = 8;
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value);//重写hashCode函数,为键值的hashCode值异或 } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
HashMap#hash(),即上面的函数。
参考:https://blog.csdn.net/fan2012huan/article/details/51097331
static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
HashMap#tableSizeFor() :获取大于这个方法用于找到大于等于initialCapacity的最小的2的幂
参考:https://blog.csdn.net/fan2012huan/article/details/51097331
static Class<?> comparableClassFor(Object x) { if (x instanceof Comparable) { Class<?> c; Type[] ts, as; ParameterizedType p; if ((c = x.getClass()) == String.class) // bypass checks return c; if ((ts = c.getGenericInterfaces()) != null) { for (Type t : ts) { if ((t instanceof ParameterizedType) && ((p = (ParameterizedType) t).getRawType() == Comparable.class) && (as = p.getActualTypeArguments()) != null && as.length == 1 && as[0] == c) // type arg is c return c; } } } return null; }
comparableClassFor:HashMap类中有一个comparableClassFor(Object x)方法,当x的类型为X,且X直接实现了Comparable接口(比较类型必须为X类本身)时,返回x的运行时类型;否则返回null。
instanceof
x instanceof Comparable
instanceof 可以理解为某种类型的实例,无论是运行时类型,还是它的父类,它实现的接口,它的父类实现的接口,甚至它的父类的父类的父类实现的接口的父类的父类,总之,只要在继承链上有这个类型就可以了。
getClass()
c = x.getClass()
与instanceof相应对的是getClass()方法,无论该对象如何转型,getClass()返回的只会是它的运行时类型,可以简单的理解为它的实际类型,也就是new它的时候的类型。
有一种例外情况,匿名对象。当匿名对象调用getClass()时返回的是依赖它的对象的运行时类型,并以1,2,3…的索引区分。
public class Demo { public static void main(String[] args) { D d = new D(); System.out.println(new A(){}.getClass()); // class Demo$1 System.out.println(new B(){}.getClass()); // class Demo$2 System.out.println(new Comparable<Object>(){ // class Demo$3 @Override public int compareTo(Object o) { return 0; }}.getClass()); System.out.println(d.c.getClass()); // class D$1 } } abstract class A{} abstract class B{} abstract class C{} class D{ C c; D(){ c= new C(){}; } }
参考:https://blog.csdn.net/qpzkobe/article/details/79533237
resize:初始化table数组或者扩容
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
参考:https://blog.csdn.net/u013494765/article/details/77837338