STM32 HAL库快速实战【十】《颜色传感器的使用》--基于黑龙江科技大学机电工业机器人实训

系列目录

点击展开

模块介绍

image

TCS34725是一款低成本,高性价比的RGB全彩颜色识别传感器,传感器通过光学感应来识别物体的表面颜色。支持红、绿、蓝(RGB)三基色,支持明光感应,可以输出对应的具体数值,帮助您还原颜色本真。 为了提高精度,防止周边环境干扰,我们特意在传感器底部添加了一块红外遮光片,最大程度减小了入射光的红外频谱成份,让颜色管理更加准确。板载自带高亮LED,可以让传感器在低环境光的情况下依然能够正常使用,实现“补光”的功能。模块采用I2C通信。

接线

直接接到SD1,SA1接口上。

CubeMX配置

采用GPIO模拟I2C。PA0,PA1都配置成推挽输出,高速模式,默认无输出。

点击查看具体配置

编写代码

该模块采用IIC协议通讯,需要大量的地址读写操作,这里不一一赘述,这里直接使用从众灵科技官方代码移植的驱动代码。
新建color.c和color.h,将一下驱动代码复制进对应文件,添加进工程。

color.c
#include "color.h"

COLOR_RGBC rgb;
COLOR_HSL  hsl;

/******************************************************************************/
void delay_s(uint32_t i)
{
	while(i--);
}
/******************************************************************************/
void TCS34725_I2C_Init()
{
	GPIO_InitTypeDef GPIO_InitStruct = {0};
	GPIO_InitStruct.Pin = TCS_SDA_Pin|TCS_SCL_Pin;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOA, TCS_SDA_Pin|TCS_SCL_Pin, GPIO_PIN_SET);
	
}
/*********************************************/
void TCS34725_I2C_Start()
{
	TCS_SDA_OUT();
	TCS_SDA_H;
	TCS_SCL_H;
	delay_s(40);//delay_us(4);
	TCS_SDA_L;
	delay_s(40);//delay_us(4);
	TCS_SCL_L;
}
/*********************************************/
void TCS34725_I2C_Stop()
{
	TCS_SDA_OUT();
	TCS_SCL_L;
	TCS_SDA_L;
	delay_s(40);//delay_us(4);
	TCS_SCL_H;
	TCS_SDA_H;
	delay_s(40);//delay_us(4);							   	
}
/*********************************************/
//返回值:1,接收应答失败
//        0,接收应答成功
uint8_t TCS34725_I2C_Wait_ACK()
{
	uint32_t t=0;
	
	TCS_SDA_IN();//SDA设置为输入  
	TCS_SDA_H; 
	delay_s(10);//delay_us(1);
	TCS_SCL_H; 
	delay_s(10);//delay_us(1);
	while(TCS_SDA_READ)
	{
		t++;
		if(t > 250)
		{
			TCS34725_I2C_Stop();
			return 1;
		}
	}
	TCS_SCL_L;
	return 0;	
}
/*********************************************/
//产生ACK应答
void TCS34725_I2C_ACK()
{
	TCS_SCL_L;
	TCS_SDA_OUT();//sda线输出
	TCS_SDA_L;
	delay_s(20);//delay_us(2);
	TCS_SCL_H;
	delay_s(20);//delay_us(2);
	TCS_SCL_L;
}
/*********************************************/
//不产生ACK应答		    
void TCS34725_I2C_NACK()
{
	TCS_SCL_L;
	TCS_SDA_OUT();//sda线输出
	TCS_SDA_H;
	delay_s(20);//delay_us(2);
	TCS_SCL_H;
	delay_s(20);//delay_us(2);
	TCS_SCL_L;
}
/*********************************************/
//I2C发送一个字节		  
void TCS34725_I2C_Send_Byte(uint8_t byte)
{
	uint8_t i;
	
	TCS_SDA_OUT();//sda线输出
	TCS_SCL_L;//拉低时钟开始数据传输
	for(i = 0; i < 8; i++)
	{
		if(((byte&0x80)>>7)==1)TCS_SDA_H;
		else
			TCS_SDA_L;
		byte <<= 1;
		
		delay_s(20);//delay_us(2);
		TCS_SCL_H;
		delay_s(20);//delay_us(2);
		TCS_SCL_L;
		delay_s(20);//delay_us(2);
	} 
}
/*********************************************/
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK   
uint8_t TCS34725_I2C_Read_Byte(uint8_t ack)
{
	uint8_t i,receive = 0;
	
	TCS_SDA_IN();
	for(i = 0; i < 8; i++)
	{
		TCS_SCL_L;
		delay_s(20);//delay_us(2);
		TCS_SCL_H;
		receive <<= 1;
		if(TCS_SDA_READ) receive++;
		delay_s(10);//delay_us(1);
	}
	if (!ack) TCS34725_I2C_NACK();//发送nACK
	else TCS34725_I2C_ACK(); //发送ACK 
	
	return receive;
}
/*********************************************/
/*******************************************************************************
 * @brief Writes data to a slave device.
 *
 * @param slaveAddress - Adress of the slave device.
 * @param dataBuffer - Pointer to a buffer storing the transmission data.
 * @param bytesNumber - Number of bytes to write.
 * @param stopBit - Stop condition control.
 *                  Example: 0 - A stop condition will not be sent;
 *                           1 - A stop condition will be sent.
*******************************************************************************/
void TCS34725_I2C_Write(uint8_t slaveAddress, uint8_t* dataBuffer,uint8_t bytesNumber, uint8_t stopBit)
{
	uint8_t i = 0;
	
	TCS34725_I2C_Start();
	TCS34725_I2C_Send_Byte((slaveAddress << 1) | 0x00);	   //发送从机地址写命令
	TCS34725_I2C_Wait_ACK();
	for(i = 0; i < bytesNumber; i++)
	{
		TCS34725_I2C_Send_Byte(*(dataBuffer + i));
		TCS34725_I2C_Wait_ACK();
	}
	if(stopBit == 1) TCS34725_I2C_Stop();
}
/*******************************************************************************
 * @brief Reads data from a slave device.
 *
 * @param slaveAddress - Adress of the slave device.
 * @param dataBuffer - Pointer to a buffer that will store the received data.
 * @param bytesNumber - Number of bytes to read.
 * @param stopBit - Stop condition control.
 *                  Example: 0 - A stop condition will not be sent;
 *                           1 - A stop condition will be sent.
*******************************************************************************/
void TCS34725_I2C_Read(uint8_t slaveAddress, uint8_t* dataBuffer, uint8_t bytesNumber, uint8_t stopBit)
{
	uint8_t i = 0;
	
	TCS34725_I2C_Start();
	TCS34725_I2C_Send_Byte((slaveAddress << 1) | 0x01);	   //发送从机地址读命令
	TCS34725_I2C_Wait_ACK();
	for(i = 0; i < bytesNumber; i++)
	{
		if(i == bytesNumber - 1)
		{
			*(dataBuffer + i) = TCS34725_I2C_Read_Byte(0);//读取的最后一个字节发送NACK
		}
		else
		{
			*(dataBuffer + i) = TCS34725_I2C_Read_Byte(1);
		}
	}
	if(stopBit == 1) TCS34725_I2C_Stop();
}
/*******************************************************************************
 * @brief Writes data into TCS34725 registers, starting from the selected
 *        register address pointer.
 *
 * @param subAddr - The selected register address pointer.
 * @param dataBuffer - Pointer to a buffer storing the transmission data.
 * @param bytesNumber - Number of bytes that will be sent.
 *
 * @return None.
*******************************************************************************/
void TCS34725_Write(uint8_t subAddr, uint8_t* dataBuffer, uint8_t bytesNumber)
{
    uint8_t sendBuffer[10] = {0, };
    uint8_t byte = 0;
    
    sendBuffer[0] = subAddr | TCS34725_COMMAND_BIT;
    for(byte = 1; byte <= bytesNumber; byte++)
    {
        sendBuffer[byte] = dataBuffer[byte - 1];
    }
	TCS34725_I2C_Write(TCS34725_ADDRESS, sendBuffer, bytesNumber + 1, 1);
}
/*******************************************************************************
 * @brief Reads data from TCS34725 registers, starting from the selected
 *        register address pointer.
 *
 * @param subAddr - The selected register address pointer.
 * @param dataBuffer - Pointer to a buffer that will store the received data.
 * @param bytesNumber - Number of bytes that will be read.
 *
 * @return None.
*******************************************************************************/
void TCS34725_Read(uint8_t subAddr, uint8_t* dataBuffer, uint8_t bytesNumber)
{
	subAddr |= TCS34725_COMMAND_BIT;
	
	TCS34725_I2C_Write(TCS34725_ADDRESS, (uint8_t*)&subAddr, 1, 0);
	TCS34725_I2C_Read(TCS34725_ADDRESS, dataBuffer, bytesNumber, 1);
}
/*******************************************************************************
 * @brief TCS34725设置积分时间
 *
 * @return None
*******************************************************************************/
void TCS34725_SetIntegrationTime(uint8_t time)
{
	TCS34725_Write(TCS34725_ATIME, &time, 1);
}
/*******************************************************************************
 * @brief TCS34725设置增益
 *
 * @return None
*******************************************************************************/
void TCS34725_SetGain(uint8_t gain)
{
	TCS34725_Write(TCS34725_CONTROL, &gain, 1);
}
/*******************************************************************************
 * @brief TCS34725使能
 *
 * @return None
*******************************************************************************/
void TCS34725_Enable(void)
{
	uint8_t cmd = TCS34725_ENABLE_PON;
	
	TCS34725_Write(TCS34725_ENABLE, &cmd, 1);
	cmd = TCS34725_ENABLE_PON | TCS34725_ENABLE_AEN;
	TCS34725_Write(TCS34725_ENABLE, &cmd, 1);
	//delay_s(600000);//delay_ms(3);//延时应该放在设置AEN之后
}
/*******************************************************************************
 * @brief TCS34725失能
 *
 * @return None
*******************************************************************************/
void TCS34725_Disable(void)
{
	uint8_t cmd = 0;
	
	TCS34725_Read(TCS34725_ENABLE, &cmd, 1);
	cmd = cmd & ~(TCS34725_ENABLE_PON | TCS34725_ENABLE_AEN);
	TCS34725_Write(TCS34725_ENABLE, &cmd, 1);
}

void TCS34725_LedON(uint8_t enable) {
	uint8_t cmd = 0;
	TCS34725_Read(TCS34725_ENABLE, &cmd, 1);
	if(enable) {
		cmd |= TCS34725_ENABLE_AIEN;
	} else {
		cmd &= ~TCS34725_ENABLE_AIEN;
	}
	TCS34725_Write(TCS34725_ENABLE, &cmd, 1);
}

/*******************************************************************************
 * @brief TCS34725初始化
 *
 * @return ID - ID寄存器中的值
*******************************************************************************/
uint8_t TCS34725_Init(uint8_t time,uint8_t gain)
{
	uint8_t id=0;
	uint8_t cmd_return[100];
	TCS34725_I2C_Init(); 
	TCS34725_Read(TCS34725_ID, &id, 1);  //TCS34725 的 ID 是 0x44 可以根据这个来判断是否成功连接
	sprintf((char *)cmd_return, "{id=%x\r\n}", id);
	usart_send_str(&huart3,cmd_return);
	if(id==0x44)
		{
			TCS34725_SetIntegrationTime(time);
			TCS34725_SetGain(gain);
			TCS34725_Enable();
			return 1;
		}
	return 0;
}
/*******************************************************************************
 * @brief TCS34725获取单个通道数据
 *
 * @return data - 该通道的转换值
*******************************************************************************/
uint16_t TCS34725_GetChannelData(uint8_t reg)
{
	uint8_t tmp[2] = {0,0};
	uint16_t data;
	
	TCS34725_Read(reg, tmp, 2);
	data = (tmp[1] << 8) | tmp[0];
	
	return data;
}
/*******************************************************************************
 * @brief TCS34725获取各个通道数据
 *
 * @return 1 - 转换完成,数据可用
 *   	   0 - 转换未完成,数据不可用
*******************************************************************************/
uint8_t TCS34725_GetRawData(COLOR_RGBC *rgbc)
{
	uint8_t status = TCS34725_STATUS_AVALID;
	
	TCS34725_Read(TCS34725_STATUS, &status, 1);
	
	if(status & TCS34725_STATUS_AVALID)
	{
		rgbc->c = TCS34725_GetChannelData(TCS34725_CDATAL);	
		rgbc->r = TCS34725_GetChannelData(TCS34725_RDATAL);	
		rgbc->g = TCS34725_GetChannelData(TCS34725_GDATAL);	
		rgbc->b = TCS34725_GetChannelData(TCS34725_BDATAL);
		return 1;
	}
	return 0;
}

uint16_t TCS34725_GetR(void) {
//	COLOR_RGBC rgbc;
	uint8_t status = TCS34725_STATUS_AVALID;
	
	TCS34725_Read(TCS34725_STATUS, &status, 1);
	
	if(status & TCS34725_STATUS_AVALID){
		return TCS34725_GetChannelData(TCS34725_RDATAL);	
	}
	return 0;
}

uint16_t TCS34725_GetG(void) {
//	COLOR_RGBC rgbc;
	uint8_t status = TCS34725_STATUS_AVALID;
	
	TCS34725_Read(TCS34725_STATUS, &status, 1);
	
	if(status & TCS34725_STATUS_AVALID){
		return TCS34725_GetChannelData(TCS34725_GDATAL);	
	}
	return 0;
}

uint16_t TCS34725_GetB(void) {
//	COLOR_RGBC rgbc;
	uint8_t status = TCS34725_STATUS_AVALID;
	
	TCS34725_Read(TCS34725_STATUS, &status, 1);
	
	if(status & TCS34725_STATUS_AVALID){
		return TCS34725_GetChannelData(TCS34725_BDATAL);
	}
	return 0;
}

uint16_t TCS34725_GetC(void) {
//	COLOR_RGBC rgbc;
	uint8_t status = TCS34725_STATUS_AVALID;
	
	TCS34725_Read(TCS34725_STATUS, &status, 1);
	
	if(status & TCS34725_STATUS_AVALID){
		return TCS34725_GetChannelData(TCS34725_CDATAL);	
	}
	return 0;
}


/******************************************************************************/
//RGB转HSL
void RGBtoHSL(COLOR_RGBC *Rgb, COLOR_HSL *Hsl)
{
	uint8_t maxVal,minVal,difVal;
	uint8_t r = Rgb->r*100/Rgb->c;   //[0-100]
	uint8_t g = Rgb->g*100/Rgb->c;
	uint8_t b = Rgb->b*100/Rgb->c;
	
	maxVal = max3v(r,g,b);
	minVal = min3v(r,g,b);
	difVal = maxVal-minVal;
	
	//计算亮度
	Hsl->l = (maxVal+minVal)/2;
	
	if(maxVal == minVal)//若r=g=b,灰度
	{
		Hsl->h = 0; 
		Hsl->s = 0;
	}
	else
	{
		//计算色调
		if(maxVal==r)
		{
			if(g>=b)
				Hsl->h = 60*(g-b)/difVal;
			else
				Hsl->h = 60*(g-b)/difVal+360;
		}
		else
			{
				if(maxVal==g)Hsl->h = 60*(b-r)/difVal+120;
				else
					if(maxVal==b)Hsl->h = 60*(r-g)/difVal+240;
			}
		
		//计算饱和度
		if(Hsl->l<=50)Hsl->s=difVal*100/(maxVal+minVal);  //[0-100]
		else
			Hsl->s=difVal*100/(200-(maxVal+minVal));
	}
}

color.h
#ifndef __Z_COLOR_H__
#define __Z_COLOR_H__
#include "stdint.h"
#include "gpio.h"
#include "motor.h"
/******************************************************************************/
#define TCS_SCL_PIN 		GPIO_PIN_1
#define TCS_SDA_PIN 		GPIO_PIN_0
#define TCS_SDA_GPIO		GPIOA
#define TCS_SCL_GPIO		GPIOA
#define TCS_GPIO			GPIOA



#define TCS34725_ADDRESS          (0x29)
 
#define TCS34725_COMMAND_BIT      (0x80)
 
#define TCS34725_ENABLE           (0x00)
#define TCS34725_ENABLE_AIEN      (0x10)    /* RGBC Interrupt Enable */
#define TCS34725_ENABLE_WEN       (0x08)    /* Wait enable - Writing 1 activates the wait timer */
#define TCS34725_ENABLE_AEN       (0x02)    /* RGBC Enable - Writing 1 actives the ADC, 0 disables it */
#define TCS34725_ENABLE_PON       (0x01)    /* Power on - Writing 1 activates the internal oscillator, 0 disables it */
#define TCS34725_ATIME            (0x01)    /* Integration time */
#define TCS34725_WTIME            (0x03)    /* Wait time (if TCS34725_ENABLE_WEN is asserted) */
#define TCS34725_WTIME_2_4MS      (0xFF)    /* WLONG0 = 2.4ms   WLONG1 = 0.029s */
#define TCS34725_WTIME_204MS      (0xAB)    /* WLONG0 = 204ms   WLONG1 = 2.45s  */
#define TCS34725_WTIME_614MS      (0x00)    /* WLONG0 = 614ms   WLONG1 = 7.4s   */
#define TCS34725_AILTL            (0x04)    /* Clear channel lower interrupt threshold */
#define TCS34725_AILTH            (0x05)
#define TCS34725_AIHTL            (0x06)    /* Clear channel upper interrupt threshold */
#define TCS34725_AIHTH            (0x07)
#define TCS34725_PERS             (0x0C)    /* Persistence register - basic SW filtering mechanism for interrupts */
#define TCS34725_PERS_NONE        (0b0000)  /* Every RGBC cycle generates an interrupt                                */
#define TCS34725_PERS_1_CYCLE     (0b0001)  /* 1 clean channel value outside threshold range generates an interrupt   */
#define TCS34725_PERS_2_CYCLE     (0b0010)  /* 2 clean channel values outside threshold range generates an interrupt  */
#define TCS34725_PERS_3_CYCLE     (0b0011)  /* 3 clean channel values outside threshold range generates an interrupt  */
#define TCS34725_PERS_5_CYCLE     (0b0100)  /* 5 clean channel values outside threshold range generates an interrupt  */
#define TCS34725_PERS_10_CYCLE    (0b0101)  /* 10 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_15_CYCLE    (0b0110)  /* 15 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_20_CYCLE    (0b0111)  /* 20 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_25_CYCLE    (0b1000)  /* 25 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_30_CYCLE    (0b1001)  /* 30 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_35_CYCLE    (0b1010)  /* 35 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_40_CYCLE    (0b1011)  /* 40 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_45_CYCLE    (0b1100)  /* 45 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_50_CYCLE    (0b1101)  /* 50 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_55_CYCLE    (0b1110)  /* 55 clean channel values outside threshold range generates an interrupt */
#define TCS34725_PERS_60_CYCLE    (0b1111)  /* 60 clean channel values outside threshold range generates an interrupt */
#define TCS34725_CONFIG           (0x0D)
#define TCS34725_CONFIG_WLONG     (0x02)    /* Choose between short and long (12x) wait times via TCS34725_WTIME */
#define TCS34725_CONTROL          (0x0F)    /* Set the gain level for the sensor */
#define TCS34725_ID               (0x12)    /* 0x44 = TCS34721/TCS34725, 0x4D = TCS34723/TCS34727 */
#define TCS34725_STATUS           (0x13)
#define TCS34725_STATUS_AINT      (0x10)    /* RGBC Clean channel interrupt */
#define TCS34725_STATUS_AVALID    (0x01)    /* Indicates that the RGBC channels have completed an integration cycle */
#define TCS34725_CDATAL           (0x14)    /* Clear channel data */
#define TCS34725_CDATAH           (0x15)
#define TCS34725_RDATAL           (0x16)    /* Red channel data */
#define TCS34725_RDATAH           (0x17)
#define TCS34725_GDATAL           (0x18)    /* Green channel data */
#define TCS34725_GDATAH           (0x19)
#define TCS34725_BDATAL           (0x1A)    /* Blue channel data */
#define TCS34725_BDATAH           (0x1B)
 
#define TCS34725_INTEGRATIONTIME_2_4MS   0xFF   /**<  2.4ms - 1 cycle    - Max Count: 1024  */
#define TCS34725_INTEGRATIONTIME_24MS    0xF6   /**<  24ms  - 10 cycles  - Max Count: 10240 */
#define TCS34725_INTEGRATIONTIME_50MS    0xEB   /**<  50ms  - 20 cycles  - Max Count: 20480 */
#define TCS34725_INTEGRATIONTIME_101MS   0xD5   /**<  101ms - 42 cycles  - Max Count: 43008 */
#define TCS34725_INTEGRATIONTIME_154MS   0xC0   /**<  154ms - 64 cycles  - Max Count: 65535 */
#define TCS34725_INTEGRATIONTIME_240MS   0x9C   /**<  240ms - 100 cycles - Max Count: 65535 */
#define TCS34725_INTEGRATIONTIME_700MS   0x00   /**<  700ms - 256 cycles - Max Count: 65535 */
 
#define TCS34725_GAIN_1X                 0x00   /**<  No gain  */
#define TCS34725_GAIN_4X                 0x01   /**<  4x gain  */
#define TCS34725_GAIN_16X                0x02   /**<  16x gain */
#define TCS34725_GAIN_60X                0x03   /**<  60x gain */
/******************************************************************************/
#define TCS_SDA_IN()  {TCS_SDA_GPIO->CRL&=0xFFFFFFF0;TCS_SDA_GPIO->CRL|=8;}
#define TCS_SDA_OUT() {TCS_SDA_GPIO->CRL&=0xFFFFFFF0;TCS_SDA_GPIO->CRL|=3;}

#define TCS_SDA_READ   TCS_GPIO->IDR&(TCS_SDA_PIN)
 
#define TCS_SCL_H     HAL_GPIO_WritePin(TCS_GPIO,TCS_SCL_PIN,(GPIO_PinState)1)
#define TCS_SCL_L     HAL_GPIO_WritePin(TCS_GPIO,TCS_SCL_PIN,(GPIO_PinState)0)
#define TCS_SDA_H     HAL_GPIO_WritePin(TCS_GPIO,TCS_SDA_PIN,(GPIO_PinState)1)
#define TCS_SDA_L     HAL_GPIO_WritePin(TCS_GPIO,TCS_SDA_PIN,(GPIO_PinState)0)
/******************************************************************************/
#define max3v(v1, v2, v3)   ((v1)<(v2)? ((v2)<(v3)?(v3):(v2)):((v1)<(v3)?(v3):(v1)))
#define min3v(v1, v2, v3)   ((v1)>(v2)? ((v2)>(v3)?(v3):(v2)):((v1)>(v3)?(v3):(v1)))
 
typedef struct{
	unsigned short  c;      //[0-65536]
	unsigned short  r;
	unsigned short  g;
	unsigned short  b;
}COLOR_RGBC;//RGBC
 
typedef struct{
	unsigned short h;       //[0,360]
	unsigned char  s;       //[0,100]
	unsigned char  l;       //[0,100]
}COLOR_HSL;//HSL
 

uint8_t TCS34725_Init(uint8_t time,uint8_t gain);
uint8_t TCS34725_GetRawData(COLOR_RGBC *rgbc);
void TCS34725_LedON(uint8_t enable);


void RGBtoHSL(COLOR_RGBC *Rgb, COLOR_HSL *Hsl);
uint16_t TCS34725_GetR(void);
uint16_t TCS34725_GetG(void);
uint16_t TCS34725_GetB(void);
uint16_t TCS34725_GetC(void);

#endif

然后通过调用TCS34725_GetRawData(&color_rgbc);,即可获取采集的rgb值。通过对比不同通道的大小,可以粗略的判断识别的RGB三原色。
打开sensor.c,定义get_color(),编写相关代码。

代码如下
	/**
 * @brief  : 识别木块颜色,红绿蓝
 * @param  :无
 * @retval   识别的颜色,R G B
**/  
COLOR_RGBC color_rgbc;
uint8_t get_color() {
	TCS34725_GetRawData(&color_rgbc);//获取RGB
	if(color_rgbc.c>400){return 0;}
      if (color_rgbc.r > color_rgbc.g && color_rgbc.r  > color_rgbc.b ) {
		//usart_send_str(&huart3,(uint8_t *)"May RED\r\n");
		  return 'R';
      } else if (color_rgbc.g > color_rgbc.r && color_rgbc.g  > color_rgbc.b) {
		  //usart_send_str(&huart3,(uint8_t *)"May GREEN\r\n");
		  return 'G';
      } else if (color_rgbc.b > color_rgbc.g && color_rgbc.b  > color_rgbc.r) {
		  //usart_send_str(&huart3,(uint8_t *)"May BULE\r\n");
		  return 'B';
      }
	return 0;
}

由于单次识别置信度较低,我们可以参考超声波一节,采集多个数值返回中间值以减少误差。定义get_adc_color_middle(),编写对应函数。

get_adc_color_middle
/**
 * @brief  :处理颜色模块采集到的数据,取采集到的中间值
 * @param  :数组地址,元素个数
 * @retval 处理后的颜色值  
**/  
char get_adc_color_middle() {
	YSSB_LED(1);
	uint8_t i;
	static int ad_value[5] = {0}, myvalue;// ad_value_bak[5] = {0}, 
	for(i=0;i<5;i++){ad_value[i] = get_color();HAL_Delay(200);};
	selection_sort(ad_value, 5);
	myvalue = ad_value[2];
	YSSB_LED(0);
	return myvalue;  
}

这里的YSSB_LED是宏定义的TCS34725_LedON(x)函数。用于开启颜色传感器的补光灯。打开color.h,加入该宏定义#define YSSB_LED(x) TCS34725_LedON(x)
现在我们获取到了颜色传感器传来的颜色,根据不同颜色,我们可以执行不同动作。
在sensor.c中定义color_task函数。参考超声波的task,这里先只打印出来,更多的功能后续添加。

color_task
/**
 * @brief  :颜色传感器对应任务
 * @param  :无
 * @retval 无
**/ 
void color_task(){
	static uint32_t systick_ms_yanse = 0;
	int millis=HAL_GetTick();//获取系统时间
	uint8_t cmd_return[128];
	char color_value;
	if (millis - systick_ms_yanse > 20) {
		systick_ms_yanse = HAL_GetTick();
		color_value = get_adc_color_middle();//获取a0的ad值,计算出距离
		if(color_value!=0)
		{
			sprintf((char *)cmd_return, "Color = [%c]\r\n", color_value);
			usart_send_str(&huart3,cmd_return);
		}else
		{usart_send_str(&huart3,(uint8_t *)"no wood block \r\n");
		}	  
	}
}

在sensor.h中声明定义的函数

sensor.h

#include "stdint.h"
#include "color.h"
#define sound_vol HAL_GPIO_ReadPin(sound_GPIO_Port,sound_Pin)
#define Trig(x) HAL_GPIO_WritePin(Trig_GPIO_Port,Trig_Pin,(GPIO_PinState)x)
#define Echo() HAL_GPIO_ReadPin(Echo_GPIO_Port,Echo_Pin)
#define YSSB_LED(x) TCS34725_LedON(x); //颜色识别的LED灯

void sound_task(void);
void hcsr_task(void);
void color_task(void);
uint16_t get_csb_value(void);
uint8_t get_color(void);
然后在main里添加相关选项 `case 'I':color_task();break;` 需要注意的是,颜色传感器需要初始化。
/* USER CODE BEGIN 2 */
//motor_init();
//arm_init();
TCS34725_Init(TCS34725_INTEGRATIONTIME_700MS,TCS34725_GAIN_1X);

并且由于颜色识别传感器过远,因此上电后需要等待下在初始化颜色传感器,不然第一次会无法使用。
在主函数大概108行位置加入

  /* USER CODE BEGIN SysInit */
	HAL_Delay(1000);
  /* USER CODE END SysInit */

工程源码

国内用户请使用gitee克隆或是使用代理访问Github
https://github.com/USTHzhanglu/stm32-hal/tree/main/color

posted @ 2021-12-12 18:52  USTHzhanglu  阅读(1479)  评论(4编辑  收藏  举报