总结一些牛客网上 的算法岗面试题
1.关于dropout的训练测试阶段理解
dropout可以让模型训练时,随机让网络的某些节点不工作(输出置零),也不更新权重(但会保存下来,下次训练得要用,只是本次训练不参与bp传播),其他过程不变。我们通常设定一个dropout radio=p,即每个输出节点以概率p置0(不工作,权重不更新),假设每个输出都是独立的,每个输出都服从二项伯努利分布p(1-p),则大约认为训练时,只使用了(1-p)比例的输出,相当于每次训练一个子网络。dropout层相当于组合了N个网络,测试的时候去掉dropout,相当于N个网络的组合;
在训练时,每个神经单元都可能以概率 p 去除;
在测试阶段,每个神经单元都是存在的,权重参数w要乘以p,成为:pw。
dropout可以比较有效地减轻过拟合的发生,一定程度上达到了正则化的效果。论其原因而言,主要可以分为两个方面:
1).达到了一种Vote的作用。对于全连接神经网络而言,我们用相同的数据去训练5个不同的神经网络可能会得到多个不同的结果,我们可以通过一种vote机制来决定多票者胜出,因此相对而言提升了网络的精度与鲁棒性。同理,对于单个神经网络而言,如果我们将其进行分批,虽然不同的网络可能会产生不同程度的过拟合,但是将其公用一个损失函数,相当于对其同时进行了优化,取了平均,因此可以较为有效地防止过拟合的发生。
2).减少神经元之间复杂的共适应性。当隐藏层神经元被随机删除之后,使得全连接网络具有了一定的稀疏化,从而有效地减轻了不同特征的协同效应。也就是说,有些特征可能会依赖于固定关系的隐含节点的共同作用,而通过Dropout的话,它强迫一个神经单元,和随机挑选出来的其他神经单元共同工作,达到好的效果。消除减弱了神经元节点间的联合适应性,增强了泛化能力。
3).由于每次用输入网络的样本进行权值更新时,隐含节点都是以一定概率随机出现,因此不能保证每2个隐含节点每次都同时出现,这样权值的更新不再依赖于有固定关系隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况。
当前Dropout被大量利用于全连接网络,而且一般人为设置为0.5或者0.3,而在卷积隐藏层由于卷积自身的稀疏化以及稀疏化的ReLu函数的大量使用等原因,drop out是用来防止过拟合的过多参数才会容易过拟合所以卷积层没必要。(个人觉得卷积核就是特征稀疏作用,卷积核还会有relu等非线性函数,降低特征直接的关联性)
另外,我们可以把dropout理解为 模型平均。 假设我们要实现一个图片分类任务,我们设计出了100000个网络,这100000个网络,我们可以设计得各不相同,然后我们对这100000个网络进行训练,训练完后我们采用平均的方法,进行预测,这样肯定可以提高网络的泛化能力,或者说可以防止过拟合,因为这100000个网络,它们各不相同,可以提高网络的稳定性。而所谓的dropout我们可以这么理解,这n个网络,它们权值共享,并且具有相同的网络层数(这样可以大大减小计算量)。我们每次dropout后,网络模型都可以看成是整个网络的子网络。(需要注意的是如果采用dropout,训练时间大大延长,但是对测试阶段没影响)。
算法实现概述:
1)、其实Dropout很容易实现,源码只需要几句话就可以搞定了,让某个神经元以概率p,停止工作,其实就是让它的激活值以概率p变为0。比如我们某一层网络神经元的个数为1000个,其激活值为x1,x2……x1000,我们dropout比率选择0.4,那么这一层神经元经过drop后,x1……x1000神经元其中会有大约400个的值被置为0。
2)、经过上面屏蔽掉某些神经元,使其激活值为0以后,我们还需要对余下的非0的向量x1……x1000进行rescale(扩大倍数),也就是乘以1/(p)。如果你在训练的时候,经过置0后,没有对x1……x1000进行rescale,那么你在测试的时候,就需要对权重进行rescale。
问题来了,上面为什么经过dropout需要进行rescale?查找了相关的文献,都没找到比较合理的解释,后面再结合源码说一下我对这个的见解。
所以在测试阶段:如果你既不想在训练的时候,对x进行放大,也不愿意在测试的时候,对权重进行缩小(乘以概率p)。那么你可以测试n次,这n次都采用了dropout,然后对预测结果取平均值,这样当n趋近于无穷大的时候,就是我们需要的结果了(也就是说你可以采用train阶段一模一样的代码,包含了dropout在里面,然后前向传导很多次,比如1000000次,然后对着1000000个结果取平均值)。
2.GBDT的分裂标准,只能用CART作为基标准器?
GBDT中的弱分类器选择的是CART回归树。GBDT中特征的选择就是CART树的生成过程中特征属性的选择。如果是分类树,CART采用GINI值衡量节点纯度;如果是回归树,采用样本方差衡量节点纯度。节点越不纯,节点分类或者预测的效果就越差。
基于梯度提升算法的学习器叫做GBM(Gradient Boosting Machine)。理论上,GBM可以选择各种不同的学习算法作为基学习器。现实中,用得最多的基学习器是决策树。
为什么梯度提升方法倾向于选择决策树(通常是CART树)作为基学习器呢?
这与决策树算法自身的优点有很大的关系。决策树可以认为是if-then规则的集合,易于理解,可解释性强,预测速度快。同时,决策树算法相比于其他的算法需要更少的特征工程,比如可以不用做特征标准化,可以很好的处理字段缺失的数据,也可以不用关心特征间是否相互依赖等。决策树能够自动组合多个特征,它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况)不过,单独使用决策树算法时,有容易过拟合缺点。所幸的是,通过各种方法,抑制决策树的复杂性,降低单颗决策树的拟合能力,再通过梯度提升的方法集成多个决策树,最终能够很好的解决过拟合的问题。由此可见,梯度提升方法和决策树学习算法可以互相取长补短,是一对完美的搭档。
3.AUC和ROC的理解
4.LR和SVM的详细理解和推导
5.BatchNormalization和LayerNormalization的理解
6.神经网络参数的初始化方法
(1)全部置0
最简单的初始化方法就是将权值参数全部初始化为0或者一个常数,但是使用这种方法会导致网络中所有的神经元学习到的是相同的特征。当网络达到稳定状态时, 参数(权值)在理想情况下应该保持正负各半(此时期望为0)。因此一种看起来简单的方法,干脆将所有参数都初始化为0, 因为这样可以使得初始化全零时参数的期望与网络稳定时参数期望一致。
但是,参数全是零时网络不同神经元的输出必然相同,相同的输出必然导致梯度更新完全一样,这样会令更新后的参数仍然保持一样的状态。换句话说,如果参数进行了全零的参数化,那么网络神经元将无法训练模型。例如,对于y=WX+by=WX+by=WX+b,由于参数W需要和X乘积,因此不能初始化为0,而b可以。
(2)随机初始化
(3)均匀分布初始化
(4)正太分布初始化
7.常见的损失函数
(1)均方误差损失函数、绝对值损失函数、0-1损失函数
(2)交叉熵损失函数
(3)SVM中的合页损失函数
Hinge损失函数标准形式如下:
特点:
(1)hinge损失函数表示如果被分类正确,损失为0,否则损失就为 。SVM就是使用这个损失函数。
(2)一般的 是预测值,在-1到1之间, 是目标值(-1或1)。其含义是, 的值在-1和+1之间就可以了,并不鼓励 ,即并不鼓励分类器过度自信,让某个正确分类的样本距离分割线超过1并不会有任何奖励,从而使分类器可以更专注于整体的误差。
(3) 健壮性相对较高,对异常点、噪声不敏感,但它没太好的概率解释。
8.如何解决样本不均匀问题
- 数据角度:欠采样 / 过采样 / SMOTE算法等
- 模型角度:调整LR的阈值/采用树模型等
- 评估角度:采用F1值/ROC曲线等