奇异值分解(SVD)原理与在降维中的应用

       奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

 

源自:https://www.cnblogs.com/pinard/p/6251584.html

posted @ 2019-06-01 11:13  USTC丶ZCC  阅读(560)  评论(0编辑  收藏  举报